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ABSTRACT 

This paper is the second in a series on the structure of sets of solutions 
to systems of equations in a free group, projections of such sets, and the 
structure of elementary sets defined over a free group. In the second paper 
we generalize Merzlyakov's theorem on the existence of a formal solution 
associated with a positive sentence [Me]. We first construct a formal 
solution to a general A E  sentence which is known to be true over some 
variety, and then develop tools that enable us to analyze the collection of 
all such formal solutions. 

Introduct ion  

In the first paper  in this series on Diophant ine  geometry  over groups we studied 

sets of solutions to systems of equat ions defined over a free group and paramet -  

ric families of such sets ([Se]). W i t h  a given sys tem of equat ions we associated 

a canonical  Makan in -Razborov  diagram.  This  Makanin Razborov  d iagram en- 

codes the entire set of solutions to the system. Later  on we s tudied systems of 

equat ions  wi th  parameters ,  and with  each such sys tem we associated a (canon- 

ical) graded Makan in -Razbo rov  d iagram tha t  encodes the Makanin Razborov  

d iagrams of the systems of equat ions associated with  each special izat ion of the 

defining parameters .  
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In order to prove the correctness of a positive sentence defined over a free 

group, Merzlyakov has introduced "formal solutions" [Me]. In the special case of 

AE sentences, Merzlyakov's theorem implies that  if a sentence 

Vy 3x E ( x , y , a ) = l  

is a t ruth sentence, then there exists a formal solution x = x(y,a), so that  if 

we replace the variables x with their corresponding formal solutions, then each 

equation in the obtained system E(x(y, a), y, a) represents the trivial word in the 

free group F(y, a), i.e., the free group generated by the universal variables y and 

the coefficients a. 

To analyze general sentences and predicates, a generalized version of Mer- 

zlyakov's theorem is required. First, we naturally need the sentences and predi- 

cates in question to include equalities and inequalities. Second, we need to study 

AE sentences and predicates in which the universal variables do not belong to an 

entire power set of the free group in question, but rather to some given variety. 

To analyze these general AE sentences, we need to associate with the variety to 

which the universal variables belong a canonical collection of completions of the 

variety, which are built from the (taut) Makanin-Razborov diagram associated 

with it. The union of the Diophantine sets defined by the completions associated 

with a variety is precisely the variety itself. 

Once we define the completions of a variety, we are able to formulate the 

required generalization of Merzlyakov's theorem. We show (Theorem 1.18) that  

if a sentence of the form 

V y C V  3x E ( x , y , a ) = l A ~ ( x , y , a ) ¢ l  

is a t ruth sentence, where V is a variety defined by a system of equations using 

the variables y and the coefficients a, then there exists a collection of closures 
of the completions of the variety V, and with each closure there is an associated 

formal solution x = x(s, z, y, a) defined over it, so that  each of the words in 

the system of equations obtained by replacing the variables x with the formal 

solutions x = x(s, z, y, a) in the system E(x, y, a): E(x(s,  z, y, a), y, a) represents 

the trivial element in the limit group associated with the corresponding closure 

of the variety V. Moreover, we prove that  in a "generic" point in that  closure 

the inequalities hold as well. 

As we will see in the sequel, to get a quantifier elimination procedure for 

predicates defined over a free group, we will need tools that  encode the entire 

collection of formal solutions associated with a given sentence, and not only their 
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existence. In the second section we present formal limit groups and their associ- 

ated (canonical) formal Makanin-Razborov diagrams which are built precisely for 

that  purpose. Indeed, given a t ruth sentence of the form given above, the formal 

limit groups and their associated formal Makanin Razborov diagrams encode the 

entire collection of formal solutions associated with the given sentence. 

In the first two sections we study general AE sentences. In the third one 

we generalize our constructions to study AE predicates. With an AE predicate 

we associate a finite collection of graded completions (i.e., a finite collection of 

parametrized families of completions). Given a graded completion, we further as- 

sociate with the given predicate a finite collection of graded formal limit groups, 

and with each of these limit groups we associate a (canonical) graded formal 

Makanin-Razborov diagram. As in our construction of the graded Makanin- 

Razborov diagram in the previous paper in this series, the formal graded dia- 

gram encodes the entire collection of formal Makanin Razborov diagrams for all 

possible specializations of the defining parameters. 

Finally, we would like to thank Mladen Bestvina for his constant help and 

valuable comments. 

1. Formal  so lu t ions  

To analyze the structure of elementary sets over a free group, we need to look 

at projections of sets that are in the Boolean algebra of AE sets. Our approach 

to study these projections is based on a finite "trial and error" procedure, which 

uses extensively the existence of "formal solutions" suggested by Merzlyakov's 

theorem. However, unlike the original Merzlyakov's theorem [Me], one cannot 

define a "formal solution" on a general variety in terms of its defining variables. 

As we will show in this section, general "formal solutions" are associated with 

each of the resolutions that appear in the canonical Makanin Razborov diagram 

associated with the variety, and they are defined not over the variety itself, but 

rather on closures of its canonical (finite) set of completions. 

Our general approach to proving the existence of formal solutions associated 

with a given truth sentence uses the theory of actions of groups on real trees 

and the shortening argument. We start  this section with (a special case of) 

Merzlyakov's original theorem, which we prove combinatorially, in a similar way 

to Merzlyakov's original argument. 

THEOREM 1.1 ([Me]): Let Fk ----< al . . . .  , a k  > be a free group; let 

Y : ( Y l , - ' - , Y e )  a r i d  x ---- ( X l , . . .  , x q ) .  
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Let  w l ( x , y , a )  = 1 . . . .  , w ~ ( x , y , a )  -- 1 be a sys tem of  equations over Fk, and 

suppose that  the sentence 

Vy Sx Wl (X , y ,a )  = 1 . . . . .  w s ( x , y , a )  = 1 

is a t ru th  sentence. Then there  exists a f o r m a l  solution x = x(y ,  a) so tha t  each 

of  the words wj (x(y,  a),  y, a) is the trivial word in the free group F = <  y, a > .  

Proof: For a given set of tuples  of integers { (a i , f l i )}  we define 

yi([Ozi ' fli]) ~- telt~2~ ~C~i t~ltt2~ ~ i + l ~ t t l . .  . ala~2ia, 

f o r / =  1 , . . . , L  

Each specia l iza t ion  of y and x defines a tree of cancellations for each of the  

equat ions  wl (x ,  y, a) = 1 . . . .  , ws(x,  y, a) = 1. On each tree of  cancel la t ions  we 

add  no ta t ion  for the  p lacements  of the x-segments ,  y-segments  and  a -segments  

(the a segments  are the  coefficients t h a t  appea r  in the  equat ions  wl  . . . .  , ws). 

Clearly,  given the words wl (x ,  y, a) . . . . .  ws (x , y ,  a) the  combina tor ics  of the  

trees of cancel la t ions  for any possible  specia l iza t ion  are bounded .  Se t t ing  the  

weight  of a ver tex  v in a cancel la t ion  tree to  be the  to ta l  number  of x, y and  a 

segments  pass ing th rough  v, then  the  bounded  combina tor ics  of the  trees imply  

the  existence of a global  b o u n d  ~- on the  sum of the  weights of the  vert ices in 

the  cancel la t ion  trees cor responding  to Wl(X, y, a) . . . . .  w~(x, y, a) for all possible  

specia l iza t ions  of x and  y. 
Ct0 0 o = 3(i  + 1) . 7  and  /3 o = 3(i + 2) . v  - 1, and  let yO = yi([ i , /3 i ] )  Let  a i 

for i = 1 . . . . .  f. Let  yO = (yO, . . . ,yO) .  Since the  sentence t ha t  appea r s  in the  

formula t ion  of the  t heo rem is t rue,  there  exists  some x ° = (x ° . . . .  , x °) so t h a t  

'wl (x °, yO, a) = 1 , . . . ,  w~ (x °, yO a) = 1. Let  T1 . . . .  , Ts be the  cancel la t ion  trees 

cor responding  to  these last  equali t ies.  

By a s imple pigeon-hole a rgument ,  for each yO there  exists  some index pli so 

t ha t  the  segment  labe led  by  t~lt~ 2 t~ 1 in yO does not  cut  any  of the  vert ices in all  

the  cancel la t ion  trees T 1 , . . . ,  T~. 

At  this  s tage for each i = 1 , . . . ,  q we replace each of the  segments  ~1~2 ~1 in 

all  the  appearances  of yO on the  cancel la t ion  trees T1 . . . . .  T~ by  a label  zi. This  

rep lacement  allows us to  wri te  each of the  variables Yi as yi = c~zic~ for some 

cons tan t s  c~ and  c 2, and  each of the  var iables  xj  as a word xj  = xj  (zl . . . .  , Zq, a). 

By the  way the segments  ~1~2 ~1 are p laced on the cancel la t ion  trees T 1 , . . . ,  Ts; 

the  words wl (x(z,  a), y(z,  a), a ) , . . . ,  w~ (x(z,  a), y(z,  a), a) are the  t r iv ia l  words in 
i ~ - 1  z i~--1 the  free group F = <  z, a > .  Since we can set zi = t c l )  yitc2) for i = 1 , . . . ,  q 

the  theorem follows. | 
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As we have already indicated we will need a generalization of Merzlyakov's the- 

orem to a t ru th  sentence defined over an arbi t rary  (given) variety. We star t  with 

a generalization of Merzlyakov's  theorem to a sentence containing inequalities, 

which basically follows from Merzlyakov's proof  of his theorem. 

THEOREM 1.2: Let Fk = <  al . . . .  ,ak > be a free group, let W l ( X , y , a )  =- 

1 . . . . .  Ws(X,y,a) = 1 be a system of equations over Fk, and let 

vt(x,  y, a ) , . . . ,  v~(x, y, a) be a collection of words in the alphabet {x, y, a}. Sup- 

pose that the sentence 

Vy 3a: w , ( x , y , a ) =  l . . . . .  w , ( x , y , a ) =  l A v l ( x , y , a ) #  l . . . . .  v ~ ( x , y , a ) #  l 

is a truth sentence. Then there exists a formal  solution x = x(y, a) so that each 

of the words w j ( x ( y ,a ) , y ,a )  is the trivial word in the free group F = <  y,a >, 

and the sentence 

3y v t ( x ( y , a ) , y , a ) % l , . . . , v ~ ( x ( y , a ) , y , a ) ¢ l  

is a t ru th  sentence in Fk. 

Furthermore, if  the words w l , . . . ,  Ws and V l , . . . ,  V r are coefficient-free (i.e., 

they are words only in the variables x and y and not in the coefficients a), and 

there are at  least 2 universal variables, then the formal solution x = x(y, a) can 

be taken to be coefficient-free, i.e., x = x(y). 

Proof: The first par t  of Theorem 1.2 follows immediately  from the argument  

used to prove Theorem 1.1, by first choosing the yi 's as in Theorem 1.1, and then 

choosing the xj 's  to satisfy bo th  the equalities Wl(X, y, a) = 1 . . . .  , w, (x, y, a) = 1 

and the inequalities Vl (x, y, a) ~ 1 . . . .  , vr (x, y, a) ¢ 1 (such a tuple of xj 's  exist 

by the assumption of Theorem 1.2 for any possible y's).  The obtained formal 

solution satisfies the conclusion of the first par t  of the theorem. 

Suppose tha t  the words Wl . . . .  , w , , v t  . . . . .  vr are coefficient-free. Let Fu = 

< U l , . . . ,  uk > be a free group of rank k. Let 2 = 2(y,  u) be words obtained from 

the formal solution x = x(y, a) by replacing the coefficients ax . . . .  , ak with the new 

generators u ~ , . . . ,  uk in correspondence. Since the words wl, • • •, ws, v~ , . . . ,  vr 

are coefficient-free, and the words wi(x(y ,a) ,y )  are trivial in the free group 

F(y,  a), the words wi(2(y,  u), y) are trivial in the free group F(y,  a) * F~. Since 

there exists a specialization of the variables y, denoted Y0, for which 

vj(x(yo, a),yo) ¢ 1 in Fk, for all j ,  1 <_ j <_ r, vj(Yc(yo, u),yo) ¢ 1 in Fk * F~, for 

all j ,  1 < j < r, which implies tha t  v j (2 (y ,u ) , y )  ¢ 1 in F ( y , a ) ,  Fu, for all j ,  

l < _ j < r .  
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If Fy is a non-abelian free group, and for every substitution u = t(y) at least 

one of the words vj (2(y, t(y)), y) = 1 in the free group F(y,  a), then at least one of 

the words vj (£~(y, t(y)), y) = 1 in F(y,  a) * Fu, a contradiction. Hence, there must 

exist a substitution u = t(y), for which vj (2(y , t (y) ) ,y )  ¢ 1 in F(y,a) ,  for all j ,  

1 _< j < r,  which implies that  there exists some specialization of the variables 

y, ~3 • Fk, for which vj (5:(!), t(?))), ~)) ¢ 1 in Fk, for all j ,  1 < j _~ r. Clearly, 

since the words wi(2(y ,u) ,y ,a)  are trivial in F ( y , a ) *  Fu, the corresponding 

words w~(2(y, t(y)), y) are trivial in F(y, a), so the coefficient-free formal solution 

x = ~(y, t(y)) satisfies the conclusion of the second part  of the theorem. | 

To generalize Merzlyakov's theorem to arbi trary varieties, rather than the affine 

(free) varieties that  appear  in Theorems 1.1 and 1.2, we need to start  by proving 

an analogous theorem for surface groups. Unlike A E  sentences over general 

varieties, in the special case of a surface group a straightforward generalization 

of Merzlyakov's theorem is still valid, and was announced in [Kh-My] (section 5), 

who call it "implicit function theorem". 

THEOREM 1.3: Let Fk =< a l , . . . , a k  > be a free group, and let u(y) = 

[Yl,Y2]"'[Y29-1,Y2g] for g > 1 or u(y) = y~. . .y~  for g > 2 be given. Let 

the group Q =< ylu(y) > be the surface group corresponding to the equation 

= 1 .  

Let w l ( x , y ,a )  = 1 , . . .  ,w~(x,y ,a)  = 1 be a system of equations over Fk, and 

let vl(x,  y, a ) , . . . ,  vr(x, y, a) be a collection of words in the alphabet {x, y, a}. 
Suppose that the sentence 

Vy (u(y) = 1) 3x Wl(X,y,a) : 1 , . . . , w ~ ( x , y , a ) =  1A 

v l (x ,y ,a )  ~ 1 , . . . , v~ (x , y ,a )  ~ 1 

is a truth sentence. Then there exists a formal solution x = x(y, a) so that each 

of the words wj (x (y ,a ) , y ,a )  is the trivial word in the group Q * Fk =< y,a >, 

and the sentence 

~y u(y) = 1 Av l ( x ( y , a ) , y , a )  ~ 1 , . . . , v r ( x ( y , a ) , y , a )  ~ 1 

is a truth sentence in Fk. 

Furthermore, if  the sentence is coet~cient-free (i.e., the systems of equalities and 

inequalities contain no elements from the coefficient group Fk), then the formal 

solution can be taken to be coet~cient-free as well, i.e., x = x(y, a) = x(y). 

Proof." Let S be a surface with fundamental group Q = <  ylu(y) >. Let #: Q -+ 

Fk be a homomorphism with non-abelian image. By recursively applying lemma 
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5.13 of [Se], we can find a finite set of non-homotopic, non-boundary parallel, 

disjoint s.c.c, on S, c l , . . . ,  c,~, so that  each connected component of the surface 

S obtained by cutting S along this family of s.c.c, has Euler characteristic -1, 

and the fundamental group of each of these connected components is mapped 

monomorphically into Fk by the homomorphism #. 

LEMMA 1.4: There exist two collections of essential, non-homotopic, non- 

boundary parallel disjoint s.c.c, on the surface S: b l , . . . ,  bq and d l , . . . ,  dr, and 

an automorphism p E Ant(S)  with the following properties: 

(i) Each connected component S obtained by cutting the surface S along the 

first collection of s.c.c, b i , . . . ,  bq has Euler charactersitic -1, and the homo- 

morphism # o p: Q ~ Fk embeds the fundamental group of each of these 

connected components into Fk. 

(ii) Each of the curves di intersects non-trivially at least one of the curves bj. 

(iii) The entire collection of s.c.c, bl . . . .  , bq, d l , . . . ,  dt fills the surface S, i.e., 

S \ U{bl , . . . ,bq ,  d l , . . . , d t }  is a disjoint collection of simply connected 

domains in S. 

Proof." We can choose the collections of curves to be fixed collections of s.c.c.on 

the surface S. For orientable surface S we choose the collections 

For non-orientable surfaces S we choose the collections (we draw it for odd 

genus, for even genus the picture is similar) 

The collections bl . . . . .  bq and d l , . . ,  dt clearly satisfy properties (ii) and (iii) 

of the lemma, each connected component obtained by cutting S along the curves 

bl . . . . .  bq has Euler characteristic -1, and the fundamental group of each such 

connected component is isomorphic to F2. To complete the proof of part  (i), note 

that  if w E Q is a non-trivial element, and if we set p c Ant(S)  to be obtained 

from large enough powers of the Dehn twists along the curves c1 , . . . ,  c,~, then 



180 Z. SELA Isr. J. Math .  

pop  maps w to a non-trivial element in Fk. Hence, for appropriately chosen large 

powers of the Dehn twists along c l , . . . ,  Cm, g o p maps the fundamental group of 

each of the connected components obtained by cutting S along the collection of 

s .c .c .bl , . . . ,  bq isomorphically into Fk. | 

Let bl . . . .  , bq and d l , . . . ,  dt be the collections of s.c.e, constructed in Lemma 

1.4, and let p E Aut (S)  be the automorphism chosen so that part (i) of the lemma 

holds. For the rest of the proof of Theorem 1.3 we replace the homomorphism 

#: Q --+ Fk by the composi t ion/ top (and denote this composition #). We further 

set P l , . . . ,  Pq to be the automorphisms of Q that correspond to Dehn twists 

along the s.c.c, b l , . . . ,  bq, and '~)1 . . . .  , ~t to be the automorphisms of Q that 

correspond to Dehn twists along the s.c.c, d~ , . . . ,  dt in correspondence. 

In a similar way to the construction of the JSJ decomposition ([Ri-Se2], 4), we 

define the following sequences of automorphisms of the surface group Q, {vn, Vn}, 

iteratively. We set ~-1 = id., and/21 to be 

~1 el el  
l/1 = ~ 1 '  0 ~ 2 2  O " . . O ¢ t  t .  

For every index n > 1 we define ~-n to be 

mnl m'~ 2 m n 
7-n = )91 0 ~ 2  0 " . . O ~ q q  O P n - 1  

and 
V n = ¢ l  1 o 2 o . . . o C t ~  orn.  

Given the sequence of automorphisms {vn, Tn} of the surface group Q, we define 

the sequence of homomorphisms An: Q --+ Fk to be a sequence of homomorphisms 

of the form 

Like in the construction of the JSJ decomposition, our aim in defining the se- 

quence of automorphisms {Vn, 7n } and homomorphisms {A,~} is to guarantee that  

any action of the surface group Q obtained as a limit of a converging subsequence 

of homomorphisms An~ : Q -~ Fk is a minimal IET action of the surface group Q 

on the limit real tree. To obtain that goal we need to restrict the sequences of 

powers {e~, r@, en} used in the iterative definition of the sequences {Vn, 7-n, ;~n} 
to satisfy certain combinatorial conditions, similar to the ones presented in sec- 

tion 4 of [Ri-Se2]. 

Let X be the Cayley graph of the free group Fk = <  a l , . . . ,  ak >, let Y be 

the Cayley graph of the surface group Q (with respect to the generating set 

Q = <  y t , - . - , y ,  >), let (Tb, t~) be the Bass-Serre tree corresponding to the 
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decomposition of the surface group Q along the collection of s.c.c, b l , . . . ,  bq, 

and let (Td, td) be the Bass-Serre tree corresponding to the decomposition of the 

surface group Q along the collection of s.c.e, dl, . . . ,  dr. We denote by dx ,  dy ,  dTb, 

and dTd the natural (simplicial) metrics on X ,  Y ,  Tb, and Td in correspondence. 

For every element g C Q we set Q(g) = d% (g(tb), tb), ~d(g) -~ dTd (g(td), td). If 

g acts hyperbolically on Tb we denote by trb(g) the trace of the action of g on 

T5, and similarly if g acts hyperbolically on Td we denote its trace by trd(g). For 

an element f C Fk, let t r x ( f )  be the length of a cyclically reduced element that 

is conjugate to f in Fk, i.e., the "length" of the conjugacy class of f in Fk. 

Let Q = <  y l , . . - ,  y~ >, and suppose that each Yi can be written in a normal 

a 1 a 2 • a e~(~) with respect to the graph of groups corresponding to f o r m  Y i  = y~ y i  "" y i  

the decomposition of the surface S by the curves d l , . . . ,  dr. 

e~(y~) for all i, Let P R  ~ be the set of all prefixes of the words a~a2y.. .uy~ 

1 < i < s. We set R ~ = 1 and R "~ to satisfy 

R "~ > 2. max dw(u, id.) 
- -  u E p R ~ l  

where R "~ is the size of the ball whose elements are going to be "controlled" by 

the automorphism Ul of Q. Setting R "~ we define the set H Y  V1 to be 

H Y " '  = {g C Q[dw(g, id.) <_ R "~ A 0 < trd(g)} 

and the set N F  "~ to be 

N F  ~ = {g e Qldy(g,  id.) <_ R ~ A0 < Q(g)}. 

We define the constants R T~ and R ~ iteratively. For each g E Q for which 

dy(g,  id.) < R ~-~ let 

1 2 g n ( u n - l ( g ) )  
P n - - l ( g )  ---- a u ~ _ l ( g ) a u ~ _ l ( g  ) " ' ' a u ~ _ l ( g  ) 

be a normal form of u~-l(g) with respect to the graph of groups corresponding 

to the decomposition of the surface S by the curves b l , . . . ,  bq. 

Let P R  ~" be the set of all prefixes of the words a I a 2 - .  • a ~n(u~-~ (g)) 
Pn-  1 (g) " n - 1  (g) l /n-1 (~) 

for all g C Q for which dy(g,  id.) <_ R ~-~ . We set R ¢~ to satisfy 

R ~ >_ 2. max d~.((Un_l)- l (u) , id . )  
u E P R ~  

where R ~ is the size of the ball whose elements are going to be "controlled" by 

the automorphism Tn of Q. Setting R ~" we define the set H Y  ~ to be 

H Y  ~n = {g e QId~.(g, id.) <_ R T~ A0 < trb(u~_l(g))} 
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and the set N F  TM to be 

N F  TM = {g • QIdy(g ,  id.) < R TM A0 < Q(V~-l(g))}.  

Similarly, for each g • Q for which dy(g ,  id.) < R TM let 

1 2 . . .  aen( r .  (g)) 
Tn(g )  = ar~(g)ar~(g  ) T.(g) 

be a normal form of 7n(g) with respect to the graph of groups corresponding to 

the decomposition of the surface S by the curves d l , . . . ,  dq. 

Let P R  "~ be the set of all prefixes of the words a t a 2 . . .  a en(~"(9)) for all 

g • Q for which d r  (g, id.) <_ R ~ .  We set R ~ to satisfy 

R ~ > 2- max d y ( ( T n ) - l ( u ) , i d . )  
uEPR~'n 

where R ~ is the size of the ball whose elements are going to be "controlled" by 

the automorphism Un of Q. Setting R "~ we define the set H Y  "~ to be 

H Y ' ~  = {g • Qldr (g ,  id.) < R "° AO < trd(T~(g))} 

and the set N F  ~ to be 

N F ~  = {g • QIdz (g ,  id.) < R~" A0 < Q(vn(g) )} .  

Definition 1.5: For every index n and every g • N F  ~ let 

U n - l ( g )  1 2 . . .  a e n ( u . - l ( g ) )  
= au ._ l (g )au ,~_ l (g  ) Un-l(g)  

be the previously chosen normal form of un- l (g)  with respect to the decomposi- 

tion of Q corresponding to the Bass-Serre tree Tb. For every h • N F  ~ let 

r n ( h )  1 2 J .n ( r . (h ) )  
= a T . ( h ) a r . ( h  ) . . .  ctT.(h ) 

be the previously chosen normal form of r~(h) with respect to the decomposition 

of Q corresponding to the Bass-Serre tree Td. We say that  a sequence of auto- 

morphisms {u~, Tn} of the surface group Q and homomorphisms )~: Q -+ Fk of 

the form given above is a quadratic test sequence if the following conditions hold. 

(i) For n > 1 and every b~, 1 < i < q: 

m" 2 n fd(bi) trd((bi) ~ ) > 100. • max • 
l<i<_q 

(ii) For n >_ 1 and every d~, 1 < i < t: 

~" 2 n eb(d i )  t rb ( (d i ) '  ) > 100. • max • 
l < i < t  

dy (g,id.)<R TM ,j<_en(g) 

dy (h,id.)<R vn ,j<_gn(h) 



Vol. 134, 2003 DIOPHANTINE GEOMETRY OVER GROUPS II 183 

(iii) For every n > 1 and every g,g' E N F ~ :  

t d ( T ~ ( g ) ) g b ( V ~ - l ( g ' ) )  _ 1 < 
~ d ( T n ( g t ) ) ~ b ( P n - l ( g ) )  

(iv) For every n > 1 and every g C HYmn: 

trd(Tn (g) )~b(Un- l (g) ) I 
- 1~ < 

~d(Vn(g) )trb(Un-l (g) ) I 

100" q • 2 n 

100" q • 2 n 

(v) For every n > 1 and every h, h' E N F  ~ : 

1 ~b(~n(h))~d(Tn(h')) -- 1 < .2n. 
eb(L'n(h'))~d(Tn(h)) 100.q 

(vi) For every n > 1 and every h G HYmn: 

1 ltrb(Pn(h))ed(Tn(h)) _ 11 < 2n" 
eb(.n(h))trd(~-n(h)) lO0.q. 

(vii) There exist constants cl, c2 > 0 so that  for every n >_ 1 and every h, h ~ C 

NF'~  : 
tb(.~ (h))dx (~(h'), id.) 

C1 < dx(A~(h), id.)Q(,~(h'))  < c2. 

(viii) There exist constants c3, c4 > 0 so that  for every n _> 1 and every h E H Y ~ :  

trb(Un(h))dx()~(h), id.) 
c3 < trx(;~(h))Q(un(h))  < c4. 

(ix) For every index n, the homomorphism )~n: Q --+ Fk cannot be factored as 

An = ~ o 7r, where 7c: Q --+ Q1 is an embedding of Q into the fundamental 

group of a surface $1 finitely covered by the surface S, and 7:Q1 -+ Fk is a 

homomorphism, i.e., the homomorphism )~n: Q -+ Fk cannot be extended 

to a surface covered by S. 

PROPOSITION 1.6: There exist quadratic test sequences associated with the 

surface group Q. 

Proo£" Inequalities (i)-(vi) are essentially identical to the inequalities that  

appear  in claim 4.7 of [Ri-Se2]. Let hb Q be the graph of groups obtained by 

decomposing the surface group Q along the cyclic groups corresponding to the 

s.c.c, bl , . . . ,bq .  By construction, the homomorphism #: Q -+ Fk maps every 

vertex group and every edge group in Ab monomorphically into Fk. The homo- 

morphism A~: Q --+ Fk is defined to be 

~ = tL° ~ n ° " "  ° ~ °  °~n-  
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Hence, given any finite set of elements M C Q, there exists some constant e so 

that  if the exponent e~ > e, then for every ml ,m2  E M for which both un(ml) 

and vn(m2) do not fix the point tb C 775, 

eb(.n (ml))dx (An (m2), id.) 
cl < dx(~n(ml),id.)gb(un(m2) ) < c2, 

where the constants cl, c2 are independent of the finite set M. 

Similarly, for every element m C M for which trb(vn(m)) > O, 

trb(vn(m) )dx (An(m), id.) 
c3 < < e4, 

t rx  (~n (,~))ed~'n (,~)) 

where the constants e3, e4 are independent of the finite set M, and the last two 

inequalities imply the inequalities (vii) and (viii) for high enough exponent en in 

the definition of the homomorphisms ~n. 

Fixing the index n, to construct a homomorphism An that satisfies properties 

(i)-(viii) and does not factor through the fundamental group of any surface cov- 

ered by the surface S (with fundamental group Q), we fix the automorphisms 

(#n, Tn) of the surface group Q, and suppose that there exists an increasing se- 

quence of exponents {eJ}~°=l for which the homomorphisms 

e ~ e j AJ = p O ~ l  O.. 'O~gq Or/n 

do factor through the fundamental group of surfaces covered by the surface S. 

Since up to isomorphism there are only finitely many possibilities for a couple 

(Q, Q1), where Q < Q1 and Q1 is the fundamental group of a surface covered by 

the surface S, w.l.o.g, we may assume that all the homomorphisms {A j } factor 

through a (fixed) surface group Q1 which is the fimdamental group of a surface 

S1 finitely covered by the surface S. So each homomorphism A J: Q -+ Fk factors 

as AJ = 7 j oTr where 7r: Q --+ Q1 is an embedding, and 7J: Qt --+ Fk is a 

homomorphism. 

From the sequence of homomorphisms "TJ: Q1 ~ Fk we can extract a 

subsequence converging into a faithful action of the surface group Q1 on some 

real tree Yoo. Since each homomorphism "~J is an extension of the homomorphism 

AJ: Q --+ Fk, and since by the structure of the homomorphisms {AJ: Q --+ Fk} the 

finite index subgroup Q < Q1 acts discretely on the limit tree Yoo, the surface 

group Q1 acts discretely on the limit tree Yoo. Furthermore, since every edge 

stabilizer in the action of Q on Yoo is conjugate to a cyclic subgroup generated 

by one of the s.c.c, bi, each edge stabilizer in the action of Q1 on Yoo is conjugate 

to a maximal cyclic subgroup containing the element bi in the surface group Q1. 
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Let Ab Q be the decomposition of the surface group Q along the s.c.c, bl . . . .  , bq, 

and let AQ~ be the graph of groups corresponding to the action of Q1 on the 

limit tree } ~ .  By the structure of the homomorphisms M: Q -+ Fk every vertex 

group in A Q fixes a point in Y~, so it is contained in a vertex group in the graph 

of groups AQy~. 

The map 7r: S -+ $1 corresponding to the embedding zr: Q -+ Q1 is a covering 

map. Since Q1 is the fundamental group of a surface $1, and since A Q~ is Yoo 
a graph of groups with cyclic edge stabilizers, each vertex group in A Q~ is a Yoo 
subsurface of S1. Let S be a connected component of the set S ". [ J { b l , . . . ,  bq}. 

By construction X(S) = -1 ,  and (~ = 7rl(S) is conjugate to a vertex stabilizer in 

Ab Q. (~ fixes a point in } ~  so it can be conjugated into a vertex group in AQy~. 

Let (~1 be that vertex stabilizer, and let $1 be the subsurface of $1 for which 

(~1 = ~rl(S1). The covering map 7r: S -+ S1 maps the subsurface S into the 

subsurface $1, and the boundary of S is mapped to the boundary of S1. Since in 

addition X(S) = -1 ,  then, necessarily, the covering map 7r maps the subsurface 

homeomorphically onto the subsurface $1. 

Since the restriction of the covering map 7r to each subsurface :~ is a homeo- 

morphism, and since every edge stabilizer in Ab Q is also contained in some edge 

stabilizer in A Q1 the closed surface S must be a subsurface of the closed surface Yo~ ' 

$1, which clearly implies that  S = $1. Hence Q = Q1, a contradiction to the 

construction of the sequence A j. Therefore, we can choose an exponent en as 

large as we like so that the homomorphism 

e n  ~ = p o g ~  o . " o ~ q  ovn 

does not factor through the fundamental group of any cover of the surface group 

S, and we get part (ix) in Definition 1.5. | 

PROPOSITION 1.7: Let  the sequence of automorphisms of Q, {Un,Wn} and ho- 

momorphisms {An : Q -+ Fk } be a quadratic test sequence. Let  g,g~ C Q be 

non-trivial elements, and suppose max(dy (g, id.), dy (g ~, id.) ) < R v~ . Then there 

exist constants eonstg,g,,1 eonStg,g,2 , const 3, const 4 > 0 (depending on g and g') so 

that for every index n > s + 1 

dx (An (g), id.) eonst2,g,, c° stl'g' < ) < 

co, st  < co st  
dx()~n(g),id.)  < 
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and 
trx(~,~(g)) const~,g,. const ,g, < trx( n(g')) < 

Proof: If max(dy(g, id.) ,  dy(g', id.)) <_ R ~ then max(dy(g,  id.), dy(g', id.)) <_ 
m i n ( R ~ , R  " )  for every n > s. Since the sequence {Vn, Tn,)~n} is a quadratic 

test sequence, the last inequality implies that the inequalities listed in Definition 

1.5 apply to ~(g) and ~(g') for every n > s. 

Let S be the surface with fundamental group Q. Since the curves 

b l , . . . ,  bq, dl . . . . .  dt were chosen to fill the surface S, every element u E Q, u ¢ 1, 

acts hyperbolically on either the Bass-Serre tree Tb or the Bass-Serre tree Td. 
Since in addition max(dy(g,  id.), dy(g', id.)) <_ min(R ~ ,  R ~") for every n > s, 

each of the elements g, g~ belongs to either H Y  ~-~+~ or H Y  ~+~ . Therefore, in- 

equalities (iii) (viii) that appear in Definition 1.5 hold for the couple (g, g') for 

every n > s + 1. Now, from the combination of inequalities (iii), (iv), and (vii) 

of Definition 1.5, we get the inequality that relates the lengths of the elements 

An(g), ~n(g'): 

< 
' dx(~n(g') , id.)  < 

From the inequalities (v), (vi), and (viii) of Proposition 1.5 we get the inequality 

that  relates the trace and length of a single element g: 

trx()~n(g)) const4 ' c°nst3 < dx()%(g),id.) < 

and the combination of the above two inequalities gives us the third inequality 

on the ratio of the traces of two given elements g, g~: 

c°nst~'9' < trx(.~n(g')) 

Once we have constructed quadratic test sequences we are ready to complete 

the proof of Theorem 1.3. With the notation of Theorem 1.3, suppose that  the 

sentence 

Vy ( u ( y ) = l )  3x w l ( x , y , a ) = l , . . . , w s ( x , y , a ) = l A v l ( x , y , a ) ¢  l, 

. . . , v r ( x , y , a )  ~ 1 

is a t ruth sentence. 

By Proposition 1.6 there exists a quadratic test sequence associated with the 

surface group Q, so let {vn, Tn, An} be such a quadratic test sequence. Since 
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by the assumptions of the theorem, for every possible specialization of the vari- 

ables y obtained from a homomorphism from Q to the free group Fk there exists 

a specialization for the variables x, so that the given equalities Wl(X, y,a) = 
1 . . . . .  w~(x,y,a) -- 1 and inequalities v l (x ,y ,a)  ~ 1 . . . .  ,v~(x,y,a) ~ 1 are ful- 

filled, given the specializations An (y) we can choose Xn to be the shortest possible 

elements, with respect to the metric on the Cayley graph of the coefficient free 

group Fk, for which 

wl(Xn,£n(y),a) = 1 , . . . ,ws(xn ,£n(y) ,a)  -- 1A 

AVl(Xn,An(y),a) 7 £ 1,. . . ,Vr(Xn,,~n(y),a ) 7£ ]. 

By possibly passing to a subsequence (still denoted {(Zn, An(y), a)}), we may 

assume that the sequence of specializations { (xn, An (y), a)} converges to an action 

of a limit group on some real tree Yoo. We call the limit group into which the 

sequence converge, a quadratic test limit group and denote it QTL(x,  y, a). 

Since the quadratic test limit group QTL(x,  y, a) was constructed using a se- 

quence of elements {(Xn, An(y), a)} for which the equalities wl(Xn, An(y), a) = 

1, . . . ,  ws(Zn, An(y), a) = 1 are fulfilled, the words Wl(Z, y, a ) , . . . ,  ws(z, y, a) rep- 

resent the trivial words in the quadratic test limit group QTL(x ,  y, a). Similarly, 

the words Vl(X, y, a), . . . , vr(z, y, a) represent non-trivial elements in QTL(x,  y, a). 

Since the sequence {L'n, Tn, An} is a quadratic test sequence, Proposition 1.7 

implies that the sequence of specializations {An(y)} converges to the surface 

group Q, hence Q < QTL(x,  y, a). By the same proposition, either the subgroup 

Q fixes a point in the limit tree ~ ,  or it acts freely on Y~. Since Q is a surface 

group, if Q acts freely on 1~  then Q acts freely on some IET component of the 

limit tree Too. Since by property (ix) of a quadratic test sequence (Definition 

1.5) the homomorphisms An: Q ~ Fk do not factor through the fundamental 

group of a surface that is finitely covered by the surface SQ corresponding to the 

subgroup Q, if Q is not elliptic in the real tree Y, then the subgroup (stabilizer) 

of the IET component of 1 ~  on which Q acts in QTL(z ,  y, a) is Q itself. 

Suppose that  the surface subgroup Q fixes a point in the limit tree }'~. If 

the real tree 1~  contains either an axial component, an IET component, or an 

edge with non-trivial (hence, abelian) stabilizer in its discrete part, then the 

shortening argument presented in [Se], [Ri-Sel] and [Be] implies that there exists 

an automorphism r of the limit group QTL(x,  y, a) for which: 

(i) 7 fixes (elementwise) the subgroup Q and the coefficient group Fk, 

(ii) for large enough n, wi(r(Xn),)~n(y),a) = 1 for all i = 1 , . . . , s  and 

vj(~'(Xn),An(y),a) ¢ 1 for a l l j  = 1 . . . .  ,r ,  
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(iii) "l-(Xn) is strictly shorter than xn, 

which clearly contradicts our choice of the specializations x n to be the short- 

est possible. Hence, the limit tree Yoo contains no axial components, no IET 

components and all the edges in the discrete part of Y~ have trivial stabilizers. 

Let Ay~ be the graph of groups associated with the action of QTL on the 

limit tree Y~. By construction, in case the surface group Q fixes a point in 

the limit tree Y~, both subgroups Q and Fk fix the same point in the real tree 

Y~, hence they are contained in the same vertex stabilizer in the graph of groups 

Ano~. Since the limit group QTL acts non-trivially on the real tree ~ ,  and since 

~ contains no axial components, no IET components, and all the edges in the 

discrete part of Yoo have trivial stabilizers, the graph of groups A~% corresponds 

to a non-trivial free decomposition of the limit group QTL. Since both Q and 

Fk fixes the same vertex in A ~ ,  both Q and Fk are contained in the same factor 

in the free decomposition of QTL associated with Ay~. 

Let QTL = H • B1 * . "  * Bt * F be the most refined (Grushko's) free decom- 

position of the limit group QTL in which < Q, Fk > <  H,  the factor F is a free 

group, and the factors B1 . . . . .  Bt are freely indecomposable and non-cyclic. By 

the argument presented above this free decomposition is non-trivial. Suppose 

that t > 1, i.e., that  there exists a factor in this free decomposition that  is not 

free and does not contain the subgroup < Q, Fk >. In this case we modify the 

sequence of specializations {(xn, An(y),a)} so that  it factors through a proper 

quotient of QTL. 

For each index i, 1 < i < t, let b~ be a set of generators of the factor Bi, let 

h i , . . . ,  h~  be a set of generators of H, and let f be a free basis of the free factor 

F (if this factor is non-trivial). With each specialization (xn, An (y), a) from our 

given sequence, we associate the corresponding specialization of the generators 

hi . . . .  ,hm, which we denote h n. With the specializations h n and An(y) we 

further associate specializations of the generating sets b I . . . . .  b t in (new) free 

groups F1, . . . ,  Ft in correspondence, where each such free group is isomorphic 

to the coefficient free group Fk. We denote these specializations b n and choose 

them to satisfy 

w](x(h n, b n, f ) ,  A,(y), a) = 1 . . . .  , ws(x(h n, b n, f ) ,  An(y), a) = 1A 

AVl(X(h n, b n, f ) ,  An(y), a) ¢ 1 . . . . .  vr(x(h n, b n, f ) ,  A,(y), a) ¢ 1 

in the free group Fk * F1 * " "  * Ft * F, and among all such specializations of the 

generating set b l , . . . ,  b t we choose specializations for which the specialization of 

the generating set b t is the shortest possible (with respect to the metric on the 
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free group Ft). Note that  since the words wi(x, y, a) are trivial in QTL, and for 

every index n there exists a specialization (xn, A,(y), a) in the original free group 

Fk that  factors through QTL and satisfies the inequalities vj(x, y, a) ~ 1, such 

specializations of the generating sets b I . . . . .  b t in the limit group Fk*['l *." "*Ft *F 

do exist. 

By possibly passing to a subsequence, we may assume that  the sequence of 

specializations of the generating sets b l , . . . ,  b t converges. In particular, the se- 

quence of specializations of the generating set b t of the factor Bt converges into 

either the trivial group or it converges into an action of a limit g roup / ) ,  on some 

real tree Too, and since all the specializations of b t are specializations of the fac- 

tor Bt, [~t is a quotient of Bt. Furthermore, since the specializations of b t were 

chosen to be shortest possible, the real tree Too contains no axial components, 

no IET components, and the stabilizer of all the edges in its discrete part  are 

trivial. Hence , / ) t  is either trivial or cyclic or free or it inherits a non-trivial free 

decomposition from its action on T~ .  Therefore, if we set QTL1 to be the group 

D * B1 * . .-  * / ) t  * F,  then QTL1 is a proper quotient of QTL. 

Prom the descending chain condition for limit groups ([Se], 5.1), after repeat- 

ing this construction finitely many times we may assume that  the sequence of 

specializations {(xn, An (y), a)} converges into an action of a quadratic test limit 

group (still denoted) QTL on some real tree 1 ~ ,  and either the surface group Q 

is not elliptic when acting on : t~ or the Grushko's free decomposition of QTL in 

which < Q, Fk > is elliptic is of the form H * F,  where F is a free group. 

Suppose the subgroup Q < QTL is still elliptic when acting on Y~. In this 

case we modify the sequence of specializations of QTL. Let h l , . . . , h , ~  be a 

generating set of the factor H,  and let f be a generating set of the free factor F.  

With  each specialization (x~, An(y), a) from our given sequence, we associate a 

specialization of the generators hi . . . .  , hm, which we denote h n, which restricts 

to An(y) on the subgroup Q < QTL, that  satisfies 

Wl(X(h n, f),  An(y), a) = 1 . . . . .  Ws(X(h n, f) ,  An(y), a) = 1A 

AVl(X(hn, f),An(y),a) 7 ~ 1,. . . ,vr(x(hn, f),An(y),a) 7 £ 1 

in the free group Fk * F,  and among all such specializations of the generating 

set h i , . . . ,  hm we choose specializations h n which are the shortest possible with 

respect to the metric on the coefficient group Fk. 

By possibly passing to a subsequence, we may assume that  the sequence of 

specializations {h n} converges into an action of a limit g r o u p / 2 / o n  a real tree 

Too. By construction, Fk and Q are subgroups of/2/, and /2 / i s  a quotient of H. 
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If Q fixes a point when acting on T~,  then by the argument used for the analysis 

of QTL on Y~, / : / admi t s  a non-trivial free decomposition in which the subgroup 

< Q, Fk > is contained in a factor, s o / : / i s  necessarily a proper quotient of H. 

Hence, if we set the limit group QTL1 -- [t • F, then QTL1 is a proper quotient 

of QTL. 

Therefore, from the descending chain condition for limit groups ([Se], 5.1), 

after repeating this construction finitely many times, we may assume that the 

sequence of specializations { (xn, An (y), a)} converges into an action of a quadratic 

test limit group (still denoted) QTL on some real tree Y~, and the action of the 

surface group Q is not elliptic when acting on Y~. 

By Proposition 1.7, if Q is not elliptic when acting on the limit tree Y~, 

then Q acts freely on Y~. Since Q is a surface group, and the homomorphisms 

An: Q --+ Fk do not factor through the fundamental group of a surface finitely 

covered by Q, Q must be the stabilizer of an IET component in the limit tree 

Y~. Hence, the quadratic test limit group, QTL, admits a free decomposition of 

the form 

QTL = Q* U* B1 * . . . *  Bt * F 

where Fk < U, the Bi's are non-cyclic freely indecomposable, and F is a (possibly 

trivial) free group. By iteratively modifying the specializations of the subgroup 

U * B1 * . . .  * Bt * F,  precisely as we modified the specializations of QTL in case Q 

is elliptic when acting on Y~, we end up with a quadratic test limit group (still 

denoted) QTL of the form QTL = Q ,  Fk * F. 

By the construction of a quadratic test limit group, the words w i(x, y, a) -- 1 

in QTL = Q * F k * F  for a l l i ,  1 _< i _< s, and the words v j (x ,y ,a )  ~ 1 in 

QTL = Q * F k * F  for all j ,  1 _< j < r. Hence, there must exist a retract 

~: QTL --+ Q * Fk, for which wi(~(x) ,y ,a)  = 1 and vj(~I(x),y,a) ~ 1 in Q * Fk, 

for all possible indices i and j .  Hence, we have found a formal solution for our 

given sentence, 7/(x) = u(y, a), in the free product Q * Fk, which proves the first 

part of Theorem 1.3. 

Suppose the given sentence is coefficient-free. Repeating our modification of 

the quadratic test limit group QTL in the coefficient-free case, we end up with a 

quadratic test limit group of the form QTL = Q * F, where F is a free group. In 

this case there must exist a retract v: QTL ~ Q, for which wi(~(x), y, a) = 1 and 

vj(Tl(x),y,a) ¢ 1 in Q, for all possible indices i and j.  Hence, we have found a 

coefficient-free formal solution for our given coefficient-free sentence, v(x) -- u(y), 

in the surface group Q, and we finally conclude the proof of Theorem 1.3. 1 

Theorem 1.3 generalizes Merzlyakov's theorem to quadratic equations. To get 
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a general form of Merzlyakov's theorem we will also need a generalization to a 

free abelian group. 

PROPOSITION 1.8: Let Fk = <  a l , . . . ,  ak > be a free group, and for some n > 1 

let u(i,j)(y) = [Yi,Yj] for 1 <_ i < j <_ n. Let the group l:'~ = <  ylu(y) > be the 

corresponding free abelian group on n generators. 

Let w l ( x , y , a )  = 1 . . . . .  ws(x ,y ,a)  = 1 be a system of equations over Fk, and 

let v l ( x , y ,a )  . . . . .  vr (x ,y ,a)  be a collection of words in the alphabet {x , y ,a} .  

Suppose that the sentence 

Vy ( U ( y ) :  1) ?3" Wl(3:,y,a ) : 1 , . . . , W s ( X , y , a  ) : 1  A V l (x , y ,a  ) • 1, 

. . . ,v~. (x ,y ,a)  ¢ 1 

is a truth sentence. 

Then there exist finitely m a n y  free abelian groups d r a n k  n, Z 1 . . . . .  Z~, where 

Z / = <  z~, ...,~n'i > for i = 1, . . . ,  f, together with f monomorphisms ui: ~;~ 

Z~, for which u~(Yn) is a finite index subgroup in Z~, and e formal solutions 

{xi = xi (z ~, a)} with the following properties: 

(i) Each of the words wj(x i (z  i, a), y, a) is the trivial word in the group Z~ * Fk, 

and the sentence 

~z i ([z~ .i j ,  ,~j,] = 1,0_< j < <_n) A V l ( X ( z i , a ) , y , a ) ¢ l ,  

. . . , v~ (x ( z i , a ) , y , a )  ¢ 1 

is a truth sentence in Fk. 

(ii) With each monomorphism ui: ~ ~ Z¢~ one can naturally associate a Dio- 

phantine system 2 i of n equations in n variables, setting each of the yj's to 

be equal to a linear combination of the elements ( z ] , . . . ,  z~ ) corresponding 

to ui(yj), where we view z~,...,-~,i as variables. 

With each system E i we can associate the set of (integer) tuples 

(Yl , . . . ,Y,~) that are obtained as combinations of tuples of integers 

.i _i Since the homomorphisms v~ map the group Yn into a finite 

index subgroup of Z~, the determinants of the systems Ni are non-zero, 

hence for each system 2.i this collection of the obtained (integer) tuples 

( Y l , . . . ,  Y~) is a finite index subgroup of the free abeIian group of  rank n, 

Z n. We denote the corresponding subgroup Ci. Then the union of these 

subgroups C1, . . ., Ce covers the entire free abelian group of rank n, Z n. 

Equivalently, as the referee has pointed out, the images from the dual 

spaces of the various groups Z~ to the dual space of Y ,  cover the dual space 

of Y~. 
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Prool~ As in the proof of Theorem 1.1, for each couple of positive integers (a, ~) 

let 

A([a,/~]) -- ~1u2- -~u1~2~+1 • • .ala~. 

For each positive integer m, we set ?m to be 7m = A([1, m]). 

We say that  a sequence of n + l-tuples of positive integers 

{ (q0 (J), ql ( j ) , . . . ,  qn(J))}~=l 

is an abelian test sequence, if the sequence {qo(J)}~-_l is a strictly increasing 

sequence, and for every index j 

J" qo(J) < q l ( j ) , j '  q~(j) < q2( j ) , . . .  , j "  qn - l ( j )  < qn(j). 

Given an abelian test sequence we set 

_ ql(m~) , Y n ( J )  = - q ~ ( J )  YI (j) = "~qo(j) ' " "  "~qo(j) " 

Since by the assumptions of the proposition, for every possible specialization 

of commuting y's  there exist specializations for the variables x, so that  the 

given equalities Wl(X, y, a) = 1 . . . .  , ws(x, y, a) = 1 and inequalities vl(x, y, a) 
1 . . . .  , vr(x, y, a) ¢ 1 are fulfilled, given the specializations Yl(J) , . . . ,  Yn(j) we can 

choose x(j) to be the shortest possible element for which 

Wl(X(j), y(j), a) = 1 , . . . ,  w~(x(j), y(j), a) = 1A 

AVl(X(j), y(j), a) ¢ 1 , . . . ,  vr(x(j), y(j), a) ¢ 1. 

If  the sequence of specializations {(x(j),  y(j), a)} corresponding to an abelian 

test sequence converges, we call the obtained limit group an abelian test limit 
group. On the collection of abelian test limit groups we define a natural  partial 

order. We say that  an abelian test limit group ATLl (X ,y ,a )  is bigger than 

an abelian test limit group ATL2(x,  y, a), if there exists a proper epimorphism 

~: ATLI(X,  y, a) --+ ATL2(x,  y, a) that  maps the generators {x, y, a} of ATL1 to 

the corresponding generators of ATL2. 
By the arguments used in constructing the Makanin-Razborov diagram of a 

limit group (see lemmas 5.4 and 5.5 in [Se]) there exist maximal abelian test limit 
groups with respect to the collection of all possible abelian test sequences, and 

in fact there is a canonical finite collection of maximal abelian test limit groups 

with respect to the entire collection of all possible abelian test sequences, which 

we denote MATLI(X ,  y, a ) , . . . ,  MATLe(x ,  y, a). 
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Since the maximal abelian test limit groups 

M A T L I ( X ,  y, a) . . . . .  M A T L e ( x ,  y, a) 

were constructed using sequences of elements { (x( j ) ,  Y l (j) . . . . .  Yn (j))} for which 

the equalities Wl(X, y, a) = 1 . . . .  , ws(x,  y, a) = 1 are fulfilled, the words 

W l ( X , y , a ) , . . . , w s ( x , y , a )  

represent the trivial words in the maximal abelian test limit groups 

M A T L I ( x ,  y, a), . . ., M A T L ~ ( x ,  y, a) 

and similarly the words vl (x, y, a ) , . . . ,  vr (x, y, a) represent non-trivial elements 

in the maximal abelian test limit groups. Since the sequences {y(j)} are abelian 

test sequences, for each maximal abelian test limit group, < y > <  M A T L i  is a 

free abelian group of rank n. 

We continue by looking at a sequence of specializations {(x(j),  y( j ) ,  a)} that  

converges into an action of one of the maximal abelian test limit groups, which we 

denote M A T L ( x ,  y, a), on some real tree T~ .  Suppose that  the subgroup < y > 

< M A T L ( x ,  y, a) fixes a point in the limit tree T~ .  If the real tree T ~  contains 

either an axial component, an IET component, or an edge with non-trivial (hence, 

abelian) stabilizer in its discrete part,  then the shortening argument presented in 

[Se], [Ri-Sel] and [Be] implies that  there exists an automorphism T of the limit 

group M A T L ( x ,  y, a) for which 

(i) r fixes (elementwise) the subgroup < y > and the coefficient group Fk, 

(ii) for large enough j ,  w i ( v ( x ( j ) ) , y ( j ) , a )  = 1 for all i = 1 , . . . , s  and 

v j ( r ( x ( j ) ) , y ( j ) , a )  ~ 1 for all j = 1 . . . .  , r ,  

(iii) r (x ( j ) )  is strictly shorter than x(j) ,  

which clearly contradicts our choice of the specializations x ( j )  to be the shortest 

possible. Hence the limit tree T~  contains no axial components, no IET compo- 

nents and all the edges in the discrete part  of T~  have trivial stabilizers, which 

implies that  the maximal abelian test limit group M A T L ( x ,  y, a) admits a non- 

trivial free decomposition in which the subgroup < y, a > is contained in one of 

the factors. 

In this case we continue as in the proof of Theorem 1.3. Let M A T L  = 

H * B1 * . . .  * Bt  * F be the most refined (Grushko's) free decomposition of 

the limit group M A T L  in which < y, a > <  H,  the factor F is a free group, and 

the factors B1 . . . .  , Bt are freely indecomposable and non-cyclic. Suppose that  

t _> 1, i.e., that  there exists a factor in this free decomposition that  is not free and 
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does not contain the subgroup < y, a >. In this case we modify the sequences of 

specializations {(x(j),  y( j ) ,  a)} that  factor through M A T L ( x ,  y, a) so that  they 

all factor through a finite collection of proper quotients of M A T L ( x ,  y, a). 

For each index i, 1 < i < t, let bi be a set of generators of the factor Bi, 

let hi . . . .  , h~  be a set of generators of H,  and let f be a free basis of the free 

factor F (if this factor is non-trivial). Given a sequence { (x ( j ) , y ( j ) , a )}  that  

factors through M A T L ( x ,  y, a), with each specialization (x( j ) ,  y ( j ) ,  a) from the 

given sequence we associate the corresponding specialization of the generators 

hi . . . . .  hm, which we denote hi. With the specializations h j we further associate 

specializations of the generating sets b l , . . . ,  b t in (new) free groups F1 . . . . .  Ft in 

correspondence, where each such free group is isomorphic to the coefficient free 

group Fk. We denote these specializations bJ, and choose them to satisfy 

wl (x (h  j , by, ] ) ,  y( j ) ,  a) -- 1 . . . .  , ws(x(h  j , b y, f ) ,  y(j) ,  a) -- 1A 

AVl (X(hJ ,by , f ) , y ( j ) , a )  ~ 1 . . . . .  v r ( x ( h J , b y , f ) , y ( j ) , a )  ¢ 1 

in the free group Fk * F1 * " "  * Ft * F,  and among all such specializations of the 

generating set b 1, . . . ,  b t we choose specializations for which the specialization of 

the generating set b t is the shortest possible (with respect to the metric on the 

free group Ft). 

By our standard arguments (lemmas 5.4 and 5.5 in [Se]), the collection of all 

convergent sequences of these modified specializations {(x(hJ, bJ, f ) ,  y(j) ,  a)} fac- 

tor through a finite collection of maximal limit groups which we (still) denote 

M A T L I ( x ,  y, a) . . . .  , M A T L q ( x ,  y, a). Let {(x(h j,  by, f ) ,  y(j) ,  a)} be a sequence 

that  converges into one of these maximal limit groups M A T L i ( x ,  y, a). In par- 

ticular, the sequence of specializations of the generating set b t of the factor Bt 

converges into either the trivial group or it converges into an action of a limit 

group /~t on some real tree Rc¢, and since all the specializations of b t are spe- 

cializations of the factor Bt, [~t is a quotient of Bt. Furthermore, since the 

specializations of b t were chosen to be shortest possible, the real tree R ~  con- 

tains no axial components, no IET components, and the stabilizer of all the edges 

in its discrete part  is trivial. Hence/~t  is either trivial or cyclic or free or it in- 

herits a non-trivial free decomposition from its action on R¢¢. Therefore, each 

of the limit groups M A T L i ( x ,  y, a) is a proper quotient of the original maximal 

abelian test limit group M A T L ( x ,  y, a). 

From the descending chain condition for limit groups ([Se], 5.1), after repeating 

this construction finitely many times we may assmne that  the sequences of spe- 

cializations {(x(j),  y( j ) ,  a)} factor through a finite collection of maximal  abelian 
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test limit groups (still denoted) MATLI(X ,  y, a) . . . .  ~ MATLe(a ,  y, a), and the 

Grushko's free decomposition of each of these limit groups in which the subgroup 

< y, a > is elliptic is either trivial, or it is of the form H * F,  where F is a free 

group, and < y, a > <  H.  

We continue by modifying the sequences of specializations that  factor through 

the maximal abelian test limit groups M A T L I ( x ,  y, a) . . . . .  MATL~(x ,  y, a). Let 

hi . . . . .  hm be a set of generators of H,  and let f be a free basis of the free 

factor F (if this factor is non-trivial). Given a sequence {(x( j ) ,y ( j ) ,a)}  that  

factors through MATLi (a ,  y, a), with each specialization (x(j) ,  y(j) ,  a) from the 

given sequence, we associate the corresponding specialization of the generators 

hi . . . . .  hm, which satisfies 

wl(x(h j, f) ,  y(j), a) = 1 . . . .  , ws(x(M, f) ,  y(j), a) = 1A 

Avl(:r(h j, f ) ,  y(j), a) ~= 1 . . . . .  v~.(x(h :], f) ,  y(j), a) ¢ 1 

in the free group Fk * F,  and among all such specializations of hi . . . .  , hm we 

choose specializations that  are the shortest possible (with respect to the metric 

on the free group Fk), which we denote h j. 
The collection of all convergent sequences of these modified specializations fac- 

tors through a finite collection of maximal abelian test limit groups that  are 

quotients of M A T L i ( x , y , a ) .  If they are proper quotients we continue with 

these modifications. By the descending chain condition for limit groups ([Se], 

5.1), after finitely many steps we obtain finitely many maximM abelian test 

limit groups (still denoted) M A T L I ( x ,  y, a) . . . .  , MATLe(x ,  y, a), each of the 

form MATL~(x,  y, a) = H~ • F~, where Fi is a (possibly trivial) free group, 

< y, a > <  H~ and H~ admits no (non-trivial) free decomposition in which the 

subgroup < y, a > is contMned in a factor. Furthermore, for each sequence 

of specializations {(x(hJ, f) ,  y(j), a)} that  factor through a maximM test limit 

group MATLi (x ,  y, a), the specializations h j of the generators of the factor Hi 
are the shortest possible among the specializations that  satisfy the equalities and 

inequalities 

wl(x(h j, f ) ,  y(j),  a) = 1 . . . . .  'ws(x(h j, f ) ,  y(j), a) = 1A 

AVl(X(h j, f ) ,  y(j), a) ~ 1 , . . . ,  v~(x(h j, f ) ,  y(j), a) ¢ 1. 

At this point we look at a sequence of specializations {(x(j),  y(j), a)} that  con- 

verges into a faithful action of a maximal test abelian limit groups MATL~ (x, y, a) 

= Hi ,F~ on a (pointed) real tree (T~,  to). Since the factor H~ is assumed to have 

no (non-trivial) free decomposition in which the subgroup < y, a > is elliptic, and 



196 z. SELA Isr. J. Math. 

for every index j the specialization M of a (fixed) generating set of the factor Hi 

was chosen to be shortest possible, the subgroup < y, a > does not fix a point 

when acting on the limit tree Too. Furthermore, by the structure of an abelian 

test sequence, this implies that the subgroup < Y l , . . . ,  Yn-1, a > fixes the base 

point to c T~ when acting on the real tree Too, Yn acts hyperbolically on the 

real tree T~,  and the (free abelian) subgroup < Yl . . . .  , Yn-1 > fixes the segment 

[to, yn(to)] C Too, where to is the base point of the limit tree Too. 

Since the stabilizer of the segment [to, Yn (to)] C Too is non-trivial, the segment 

[to, yn(tO)] is either contained in an axial component of the tree T~ or it is 

contained in the discrete part of T~,  and all the edges that are contained in the 

segment [to,Yn(to)] have a non-trivial stabilizer that contains the free abelian 

subgroup < Yl , . . . ,Y~-I  >, and these edge stabilizers stabilize (pointwise) the 

entire axis of Yn in Too. 

In case the segment [to, yn(to)] is contained in an axial component of T~,  the 

factor Hi < M A T L i  admits the amalgamated product Hi = V *Ab~ Ab, where 

< y l , . . . , y ~ - i  > <  Abl,  and y~ E Ab but Yn ~ Abl.  

In case the segment [to, y~ (to)] is contained in the discrete part of T~,  the graph 

of groups associated with the action of Hi on the real tree Too contains a circle in 

which all the edge groups are some abelian subgroup Abl,  < Yl . . . .  , Yn-1 > <  Abl,  

and all the edges in the segment [to, y~(to)] are in the orbit of edges contained in 

this circle. Since y~ acts hyperbolically on T ~ ,  y~ ~ Abl.  In this case, the Bass 

Serre generator, bs, associated with the circle in the graph of groups associated 

with the action of Hi on T~ can be chosen to commute with the subgroup Abl,  

Yn E< Abl ,bs  > =  Ab, and Hi admits an amalgamated product of the form 

Hi = V * Abl Ab. 

Therefore, in both cases Hi = V *mbl Ab, Yl . . . .  , Y~-I  E Abl,  yn ~ Abl,  and 

the abelian group Ab is the direct sum Ab = Abl + U for some abelian subgroup 

U < Ab. 

We continue by fixing a generating set for V, Vl . . . .  , Vm. We further modify the 

sequences of specializations that factor through the maximal abelian test limit 

groups M A T L i ( x ,  y, a). Recall that M A T L i  = Hi * Fi. Let f be a free basis of 

the free factor Fi (if this factor is non-trivial). Given a sequence {(x(j),  y( j ) ,  a)} 

that  factors through M A T L i ( x ,  y, a), with each specialization (x( j ) ,  y ( j ) ,  a) from 

the given sequence we associate the corresponding specialization of the generators 

v l , . . . ,  v,~, which we denote vJ, and a specialization of the element z~, denoted 

Z3n, which satisfies 

w l ( x ( v  j ,  ZJn, f ) ,  y ( j ) ,  a) = 1 , . . . ,  ws(x(h  j,  z~, f ) ,  y ( j ) ,  a) = 1A 
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AVl (x(h j ,  z j ,  f ) ,  y( j) ,  a) ~ 1 . . . . .  vr(x(h j, z j ,  f ) ,  y(j) ,  a) ~ 1 

in the free group Fk * Fi, and among all such specializations of v l , . . . ,  Vm we 

choose specializations that  are the shortest possible (with respect to the metric 

on the free group Fk), which we denote vJ. 

The collection of all convergent sequences of these modified specializations 

factor through a finite collection of maximal abelian test limit groups that  are 

quotients of MATL~ (x, y, a). By the descending chain condition for limit groups 

([Se], 5.1), after finitely many steps of this "uncovering" procedure, we obtain 

finitely many maximal abelian test limit groups (still denoted) 

M A T L I ( x ,  y, a) . . . . .  M A T L t ( x ,  y, a), each of the form 

M A T L ~ ( x , y , a )  = Fk * Abi , Fi 

where F~ is a (possibly trivial) free group, and < Yl , . . . ,  Yn > is a subgroup (of 

rank n) of the free abelian group Abe. 

By basic properties of f.g.free abelian groups, since for every index i the sub- 

group < Yl . . . . .  Yn > is a subgroup of rank n of the abelian group Abi, Ab~ can 

be written as a (possibly trivial) direct stun 

~i ~i u i  

• i where ~ Yl , . . . ,Y~ > is a finite index subgroup in < z ~ , . . . , z  n > and the 

• i > is a direct summand of rank s. (possibly trivial) subgroup < u~ , . . . ,  u~ 

By the construction of the maximal test abelian groups, MATL~(x ,  y, a), the 

words wl(x,  y, a) . . . .  , ws(x, y, a) represent trivial words in MATL~(x ,  y, a), and 

each of the words Vl(X, y, a ) , . . . ,  vr(x, y, a) represents a non-trivial element in 

M A T L i ( x , y , a ) .  Hence, if for each index i, we denote the direct summand 

< z~, ~i > by rAbi, then for each i there must exist a retract 

~]i : M A T L i ( x ,  y, a) = Fk * Abi * Fi -+ Fk * rAbi * Fi 

• i into multiples of the obtained by mapping each of the basis elements •a~ . . . . .  u, 

element Yl, for which the elements ~i(v l (x ,y ,a) ) , . . . ,~ l i (v~(x ,y ,a) )  are non- 

trivial elements in *li(MTLi). 

We continue by replacing each of the maximal abelian test limit groups 

M A T L i ( x ,  y, a) by its retract ~i (MTLi (x ,  y, a), and for brevity we (still) denote 

each of the obtained retracts M A T L d x ,  y, a). 

Since the maximal abelian test limit groups 

M A T L I ( x ,  y, a),. . . ,  M A T L e ( x ,  y, a) 
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were constructed using sequences of elements { ( x ( j ) , y l ( j )  . . . .  , y n ( j ) , a ) }  for 

which the inequalities 

v l ( x ( j ) , y ( j ) , a )  ¢ 1, . . .  , v ~ ( x ( j ) , y ( j ) , a )  ¢ 1 

are fulfilled, for each i, 1 < i < e, there exists a specialization of the elements 

f l , . . . ,  fd~ for which there exists a specialization of the generators of the free 
• i abelian group < z{ . . . .  , z n > so that  all the inequalities 

vl(x,y,a) ¢ ¢ 1 

are fulfilled. Therefore, setting Z~ -- rAbi,  we have found epimorphisms 

Ti: M A T L ~ ( x , y , a )  -+ Fk * Z~n 

for which 

(1) vi embeds the subgroup Yn into a finite index subgroup of Z~, 

(2) the words Wl(X, y, a ) , . . . ,  ws(x ,  y, a) are trivial in M A T L i ( x ,  y, a) for every 

i, hence, these words are mapped by vi to the trivial element in Fk * Z / ,  

(3) for each i there exists some specialization of z i so that  the inequalities 

Vl (X , y ,a )  ~ 1 . . . .  ,Vr (X ,y ,a )  ~ 1 are fulfilled. 

The properties of the rank n abelian groups Z~ stated above prove part  (i) 

of the proposition. With each monomorphism ~i: }n --+ Z~ one can naturally 

associate a Diophantine system Ei of n equations in n variables, setting each of 

the yj ' s  to be equal to a linear combination of the elements (z{ . . . .  , z /)  corre- 

sponding to vi(yj), where we view z{,. .  ,i ., .~ as variables. With each system Ni 

we associate the set of (integer) tuples (Yl . . . .  , Yn) that  are obtained as combina- 

tions of tuples of integers z{, ...,~~,-i which is a finite index subgroup of the free 

abelian group of rank n that  we denote Ci. 

Suppose that  the union of the subgroups Ci does not cover the whole free 

abelian group of rank n, Z n. Under this last assumption there must exist an 

element ?) C Z ~ so that  ~ ~ Ci for i = 1 , . . . ,  e. If  for each index i the subgroup 

Ci is a subgroup of index indi of Z n, then for every element v E Z ~ the element 

indl  . ind2 • . . . . inde . v + ~ ~ Ci 

for every index i, 1 < i < ~. Therefore, there exists an abelian test sequence of 

integers { (qo (j),  q l (j) . . . . .  q~ (j))} for which there is no convergent subsequence of 

corresponding elements {(x(j),  y( j ) ,  a)} that  factors through any of the maximal  

abelian test limit groups M A T L I ( x ,  y, a ) , . . . ,  M A T L e ( x ,  y, a), which contradicts 

their universal property. | 
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For completeness,  we bring a formulat ion of Proposi t ion  1.8 for free abel ian 

groups wi th  constants ,  i.e., when the  free abel ian group Y~ is assumed to commute  

with a fixed element cl • Fk. The  proof  is essentially identical to the proof  of 

Proposi t ion  1.8. 

PROPOSITION 1.9: Let  Fk = <  a l  . . . . .  ak > be a free group, and let ul (y)  = 

[¢I,Yl] . . . . .  an(y)  = [cl,yn] for some n > 1, cl • Fk, c, ¢ 1, and u(i,j) = [Yi,Yj] 

for 1 <_ i < j <_ n. W.l.o.g. we m a y  assume that  C1 has no non-trivial  roots in Fk. 

Let  the group CI~+I  = <  Cl, ylu(y)  > be the corresponding free abelian group 

on n + 1 generators. 

Let  Wl(X, y, a) = 1 , . . . ,  w~(x,  y, a) = 1 be a sys t em of  equations over Fk, and 

let V l (X ,y ,a )  . . . .  , v ~ ( x , y , a )  be a collection o f  words in the alphabet  { x , y , a } .  

Suppose that  the sentence 

Vy (u(y)----1) 3x W l ( X , y , a ) =  l . . . .  , w s ( x , y , a ) = l A v l ( x , y , a )  

¢1 . . . . .  v r ( x , y , a )  ¢ 1 

is a truth  sentence. 

Then there exist  f initely m a n y  free abelian groups o f  rank n + 1, 
1 g i " ~i  CZ~_t_I, . . . . . . ,  CZn+l ,  where CZn+ 1 = <  cl,  z~, ,*n > for i = 1,. .. , f, together 

with ~ monomorph i sms  vi: CYn+I --+ CZ~+I so that  ui(Cl) = el, and f formal  

solutions {xi  = x i (z i, a) } with the following properties: 

(i) Each of  the words w j ( x i ( z i , a ) , y , a )  is the trivial word in the group 

CZ~+I *<~,> Fk, and the sentence 

3.~ ~ ~ ( ~ )  = 1 A v ~ ( ~ ( & a ) , ~ , a )  ¢ 1 . . . .  ,~r(~(&a),y,a) ¢ 1 

(ii) 

is a truth sentence in Fk. 

W i t h  each monomorph i sm  P.i : C}'n+l -4 CZi, z+I one can natural ly  associate 

a Diophantine sy s t em of  equations, se t t ing each of  the y j ' s  to be equal to a 

linear combination o f  the elements  (Cl, z~, . .  .i • ,*n). Since the de terminant  

of  this sys tem is non-zero, there exists  a (finite index) subgroup U;~ < •n = 

< Y l , . . . ,  Yn > and a constant  vector ai E Y~ for which the solutions of  the 

corresponding Diophantine sys tem are ai1 integers i f  and onty  i f  y = u + ai 

where u E U~n • Then the union o f  the cosets al -t- g l , . .  ., at -t- Uen cover the 

entire abelian group Y,~. 

In the above theorems the sentences considered are defined over a free group 

(Theorems 1.1 and 1.2), a surface group (Theorem 1.3), and a free abel ian group 

(Proposi t ions 1.8 and 1.9). To s ta te  a similar theorem for a general l imit group we 
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need to present the completion of a limit group associated with a given resolution 

of it. To define the completion of a limit group associated with a resolution, we 

first replace the canonical Makanin-Razborov diagram by the canonical strict 
Makanin Razborov diagram. 

Let Rlim(y, a) be a restricted limit group. The (canonical) Makan i~Razborov  

diagram of Rlim(y, a) gives a canonical collection of (Makanin-Razborov) reso- 

lutions, so that  any specialization of the restricted limit group Rlim(y, a) factors 

through (at least) one of the Makanin-Razborov resolutions. Our first step in 

constructing the completion of a restricted limit group is to replace the canoni- 

cal collection of Makanin-Razborov resolutions associated with a restricted limit 

group with a canonical collection of strict MR resolutions (strict MR resolutions 

are defined in ([Se], 5.11)). 

PROPOSITION 1.10: Let Rlim(y,a) be a restricted limit group. There exists a 
(canonical) collection of strict MR resolutions Resl (y, a ) , . . . ,  Res~ (y, a), so that 
the limit groups associated with the resolutions Resi (y, a) are either Rlim(y, a) 
itself or a quotient of it, for which every specialization of Rlim(y, a) factors 
through (at least) one of the resolutions Resi (y, a). 

Proof: To get such a (canonical) collection of strict MR resolutions, we start  with 

the canonical collection of Makanin-Razborov resolutions (the ones that  appear 

in the Makanin Razborov diagram of the restricted limit group Rlim(y, a)). Each 

resolution in the Makanin Razborov diagram of Rlim(y, a) which is a strict reso- 

lution is taken to be one of the resolutions in our new collection. Each non-strict 

resolution in the Makanin-Razborov diagram is replaced by a finite collection of 

strict resolutions either of the limit group Rlim(y.a) or of a quotient of it. 

Let Res(y, a) be a resolution in the Makanin-Razborov diagram of Rlim(y, a) 
that  is not a strict MR resolution. Let {Rlimj (y, a)} be the restricted limit groups 

that  appear along the resolution Res(y,a). For each level j ,  let ARlimj(y,a) 
be the restricted limit group obtained from the collection of specializations of 

Rlimj(y, a) that  factor through (the relevant part  of) the resolution Res(y, a). 
Since Res(y,a) is not a strict MR resolution, at least for some level j ,  

ARlimj(y,a) is a proper quotient of Rlimj(y,a). Let jh be the highest level 

for which ARlimj (y, a) is a proper quotient of Rlimj (y, a). We replace the res- 

olution Res(y, a) by finitely many resolutions obtained in the following way: 

(i) The top par t  of the obtained resolutions is identical with the top part  of 

the resolution Res(y, a) starting at level jh - 1 and above. 

(ii) Each of the new resolutions is obtained by starting with the top part  of 
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Res(y, a) and continuing along one of the resolutions that  appear  in the 

Makanin Razborov diagram of the restricted limit group ARlimjh (y, a). 

Clearly, every specialization that  factors through the resolution Res(y, a) factors 

through (at least) one of the obtained resolutions. 

We continue the construction of the strict Makanin-Razborov diagram with 

the obtained resolutions. 

Any resolution from the obtained collection which is a strict resolution is taken 

to be a resolution in our collection of strict resolutions. If an obtained resolution 

is not strict, we replace it by finitely many resolutions obtained by the same 

procedure applied before for the resolution Res(y, a). Since a restricted limit 

group that  appears along a resolution obtained by this procedure is a proper 

quotient of the previous limit group that  appears along the same resolution, and 

since the procedure replaces a restricted limit group along a resolution by its 

proper quotient, the ascending chain condition for (restricted) limit groups ([Se], 

5.1) implies that  the procedure described above terminates in a finite time. By 

construction, every resolution obtained after the termination of the procedure is 

a strict resolution, and every specialization that  factors through the restricted 

limit group Rlim(y, a) factors through at least one of the collection of strict 

resolutions we end up with. | 

We call the canonical collection of strict MR resolutions constructed in Propo- 

sition 1.10 the (canonical) strict Makanin-Razborov diagram of the restricted 

limit group Rlim(y, a). 

For the purposes of our "trial and error" procedure for quantifier elimination 

we need to construct completion of resolutions which are strict M R  resolutions 

([Se], 5.11), and are more general than the resolutions that  appear  in the strict 

Makanin-Razborov diagram of a limit group. To allow "economical" construction 

of the completion, we need to restrict the construction of the completion to well- 
structured resolutions. 

Definition 1.11: Let Fk ----< a l , . . . , a k  > be a free group, let Rlim(y,a) be a 

restricted limit group defined over Fk, and let Res(y, a) be a strict M R  resolution 

of Rl im(y,  a) ([Se], 5.11). 

Suppose that  the resolution Res(y, a) is given by a decreasing sequence of 

restricted limit groups: 

Rlim(y,a) -- Rlimo(y,a) -+ Rliml(y,a) -+. . .  -+ Rlim~(y,a) --+... --+ 

• .. -+ Rlim~(y,a) - -< f , a  > *H e 
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where < f ,  a > is a free group generated by < f ,  a > and H e is a free group. Let 

Yi: Rlimi(y,  a) --+ Rlimi+l(y,  a) be the canonical quotient maps. 

With each restricted limit group Rlimi(y,  a) that appears along the given re- 

stricted resolution Re s (y, a), there is an associated (restricted) free decomposition 

Rlimi(y ,a)  : R~ * . . . *  Rq(i) * F~k(i ) * H i 

where ~!k(i) is a (possibly trivial) free group of rank rk(i), H i is a (possibly 

trivial) free group, and the coefficient group Fk is contained in one of the factors 

R}. With each factor R~ there is an associated (restricted, possibly trivial) 

abelian decomposition (graph of groups) and a corresponding restricted modular 

group. 

The associated restricted modular groups of each of the factors R~- is generated 

by the following families of automorphisms of R} (cf.[Se], 8.4): 

(i) Dehn twists along edges of the restricted abelian decomposition of R}. If 

the coefficient group Fk is a subgroup of a factor R}, then the Dehn twists 

are assumed to fix (elementwise) the vertex stabilized by the coefficient 

group Fk in the graph of groups associated with the factor R}. 

(ii) Dehn twists along essential s.c.c, in QH (quadratically hanging) vertex 

groups in the restricted abelian decomposition of R}. Again, these Dehn 

twists are assume to fix (elementwise) the vertex stabilized by the coefficient 

group Fk if it is contained in a factor R}. 

(iii) Let A be an abelian vertex group in the restricted abelian decomposition 

of R}. Let A1 < A be the subgroup generated by all edge groups connected 
to the vertex stabilized by A in the abelian decomposition of R). Every 

automorphism of A that fixes A1 (elementwise) can be naturally extended 

to an automorphism of the ambient limit group R}, and this automorphism 

of the factor R} can be assumed to fix the coefficient group Fk if it is 

contained in the factor R}. 

We say that the strict M R  resolution Res(y, a) is a well-structured resolution 

if the following conditions hold: 

(1) The quotient map z]i: Rlimi(y,  a) --+ Rlimi+l(y,  a) maps F¢k(i ) monomor- 
phically onto a free factor of F~+(li+l) and H i onto a free factor of H i+1. 

(2) If the factor R} is neither a closed surface group nor a free abelian group, 

then ~?i(R}) is a free product of (possibly) some non-free factors in the free 
decomposition of Rlimi+l(y,  a) and (possibly trivial) factors in some free 

Fi+ 1 Hi+l decomposition of the free groups rk(i+~) and . In the free decom- 
Fi+l positions of Rlimi+l(y,a) ,  ra(i+l) and H i+1, the factors onto which a 
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(3) 

(4) 

( 5 )  

(6) 

non-abelian, non-surface factor R~ is mapped are distinct from the factors 

onto which R~, is mapped for j # j ' ,  and distinct from the factors ~/i(H ~) 

and r/i (F~/k(i)). 

Since we assume that the resolution Res(y, a) is a strict MR resolution, the 

quotient map r/i maps every non-abelian, non-QH vertex group and every 

(abelian) edge group in the abelian decompositions associated with a factor 

R~ monomorphically into RIimi+l(y, a), for all possible tuples (i , j) .  The 

image of a QH vertex group under a quotient map is non-abelian. 

Let Ab~ . . . . .  Abiq( 0 be the (non-cyclic) abelian factors among the factors 
R}. Then rji(Abiu) = C~, C,~, is a cyclic subgroup of H/+l,  and C~ * - - -*  

C~(i) • rli(H i) is a free factor in some free decomposition of the free group 
Hi+l. 

Let R/. R~ be the subset of the factors R} that are isomorphic 
31 ' " " " ' J~(i)  

to (non-abelian) closed surface groups. Then the image of such a factor, 

71i(R},,) -- H~, H~, is a subgroup of H i+l, and 

, . . . ,  * , . . . ,  • 

is a free factor in some free decomposition of the free group H i+l. 
Let Q{ , . . . ,  Qi,(i) be the QH vertex groups in the abelian decompositions of 

the factors R} that are non-abelian and not isomorphic to a closed surface 

group. Recall that ~(Ab~) = C~. For each QH subgroup Q~ let AQ~ be the 

cyclic decomposition obtained from the abelian decomposition associated 

with the factor R) containing the QH subgroup Q~, by collapsing all the 

edges that are not connected to the QH subgroup Q~. We say that the cir- 
c.umfeeence of the QH subgroup Q~, denoted Circum(O~), is the subgroup 

generated by Q~ and all the Bass Serre generators connecting (some of) its 

boundary components to vertex groups in AO{. 

For each QH subgroup Q~ let bali,i,..., bdt,c(t) be its boundary compo- 

nents. Let ~i(Circum(Q~)) = V1 * " ' "  * Vm(t) * H i be the maximal (most 
refined) free decomposition inherited by ~(Circurn(Q~)) from the given free 

decomposition of Rlimi(y, a) in which each of the images of the boundary 

elements ~i(bdt,n) can be conjugated into one of the free factors V~, and 

for each factor V~ there exists at least one image of a boundary element 

~]i(bdt,,J that can be conjugated into it. Then H[ is a free group and 

• " i H i+l = H~ * . . .  * H~(i) • C{ * . . .  * Cq(i) * rli(H i) 

and 

Ri+l Fi+l V l * ' " * V m ( t )  < R~ + 1 . ' ' ' *  q(i+l)* rk(i+l)" 
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A b  

/ 

Note that,  by definition, every well-structured resolution is a strict resolution 

but, in general, a strict resolution is not necessarily well-structured. However, 

since the (canonical) Makanin Razborov diagram is constructed from an descend- 

ing chain of maximal shortening quotients, every resolution in the strict Makanim 

Razborov diagram, presented in Proposition 1.10, is well-structured. Hence, the 

strict Makanin Razborov diagram allows us to restrict the construction of the 

completion to well-structured resolutions. 

De~nition 1.12: Let Res(y,  a) be a well-structured resolution of a limit group 

Rlim(y ,a) .  We construct the completion of the resolution Res(y,a) ,  denoted 

Comp(Res) ( z , y ,a ) ,  iteratively from bot tom to top. Keeping the notation of 

Definition 1.11, suppose that the resolution Res(y,  a) is given by a decreasing 

sequence of restricted limit groups 

Rlim(y,  a) = Rlimo(y,  a) --+ Rl iml (y ,  a) --+ . . .  --+ Rlimi(y,  a) -+ . . .  --+ 

• .. --+ Rlim~(y, a) =< f,  a > *H e 

where < f ,  a > is a free group generated by < f ,  a >, and H e is a free group. 

Let ~i: Rlimi(y,  a) -+ Rlimi+l(y,  a) be the canonical quotient maps. Res(y,  a) is 

a well-structured resolution, so with each restricted limit group Rlimi  (y, a) that  

appears along the given restricted resolution Res(y,  a) there is an associated 

(restricted) free decomposition 

• i i H i Rlimi(y,  a) = R~ * . . .  * Rq(i)  * Frk( i  ) * 

where Fik(i) is a (possibly trivial) free group of rank rk(i),  H i is a (possibly 

trivial) free group, and the coefficient group Fk is contained in one of the factors 

R~. With each factor R~ there is an associated (restricted, possibly trivial) 

abelian decomposition (graph of groups) and a corresponding restricted modular 

group. 

For presentation purposes we start by describing the construction of the com- 

pletion, assuming the resolution Res(y,  a) is a minimal rank well-structured res- 

olution, i.e., assuming that  the terminal free group Rlim~ = F~k(~ ) * H e is the 
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coefficient group Fk (i.e., that  F[k(e ) = Fk and H e is trivial), and then generalize 

the construction for arbitrary well-structured resolutions. 

Suppose that  Res(y,a) is a minimal rank well-structured resolution. Since 

Res(y, a) is of minimal rank, the free products associated with the various levels 

are trivial, i.e., Rli'rni(y, a) = R~ for 0 < i < f -  1, none of these limit groups 

are abelian or a closed surface group, and with Rlim~(y, a) there is an associated 

graph of groups with (non-trivial) abelian edge groups. 

We construct the completion of Res(y, a) iteratively from bot tom to top. We 

start  by changing the f -  1-th limit group, Rlime_l(y,a), to a limit group 

Comp(RIim)e_l by modifying the abelian decomposition associated with 

Rlime_ 1. 

Let A e-1 be the abelian decomposition associated with the g -  1-th limit group 

Rlime_l(y, a). To modify the limit group Rlime_l(y, a) and its abelian decom- 

position, we start with the terminal (coefficient) free group Rlirne(y, a) = Fk. 
With each edge e in the graph of groups A e-1 that  connects two non-abelian, 

non-QH vertex groups we associate a generator 9e. Let Ge be the edge group 

associated with such an edge in A e-1. We set the group G1 to be the group gen- 

erated by the terminal group Rtime(y, a) together with the additional elements 

{g~}. To define G1 we add relations that force each of the additional generators 

g~ to commute with the maximal cyclic subgroup in Fk that contains the image 

of G~ under rle-1, ~e-l(Ge). For any pair of edges el ,e2,  for which ~e_l(G~l) 
commutes with r le- t (G~),  we further add the relation [g~,,ge~] = 1. Hence, G1 

is obtained from Rlime = Fk by adding some free abelian groups amalgamated 

along (maximal) cyclic edge groups. 

We continue by modifying G1 by adding new generators associated with (non- 

cyclic) abelian vertex groups in Ae-L 

With each non-cyclic abelian vertex group Abn of rank n in the cyclic decom- 

position A e-~ that is connected to some non-abelian vertex group by an edge 

with (maximal) cyclic stabilizer GAbs, we associate new generators abl . . . .  , abe. 
We modify G1 by adding all the new generators to it, together with relations that 

force abl to be equal to the corresponding generator of ~e-l(Ab,~) < Fk < G~, 
and commutant relations that  force the other new generators to commute with 

the centralizer in G1 of the image of Abn in Fk. Therefore, we end this second 

modification with a group G2 that admits a canonical graph of groups composed 

of one vertex stabilized by the coefficient group Fk and (possibly) several addi- 

tional vertices, each stabilized by a non-cyclic free abelian group and connected 

to the vertex stabilized by Fk with a single edge with (maximal) cyclic stabilizer. 
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We continue by adding QH vertex groups corresponding to the QH vertex 

groups in A e-1 to the group G2. Let Q1 , . . . ,  Qu be the QH vertex groups in A e-1. 

Let Q~ , . . . ,  Q~ be QH vertex group isomorphic to Q1 , . . . ,  Qu in correspondence. 

With G2 and the QH subgroups Q ~ , . . . , Q ~  we associate a graph of groups, 

starting with the graph of groups associated with the group G~, and adding new 

vertices for each of the vertex groups Q~ . . . . .  Q~. For each boundary component 

bd' of a QH vertex group Q}, we add an edge connecting the vertex stabilized 

by Q} to the vertex stabilized by Rlime(y, a) = Fk, and identifying the cyclic 

subgroup generating by bd' to the image in Fk of the corresponding boundary 

component bd of the QH vertex group Qj in A e- l ,  ~e-l(bd). 

5 .Ab, 
/ 

[ ]  

Performing all these operations, we end up with one graph of groups with cyclic 

edge stabilizers, one vertex stabilized by Rlime(y, a) = Fk, (possibly) a few ver- 

tices with free abelian vertex groups connected to the (distinguished) vertex sta- 

bilized by Fk with an edge with (maximal) cyclic stabilizer, and (possibly) a few 

vertices with QH vertex groups, whose boundary components are all connected 

to the vertex stabilized by Fk. We call the fundamental group of this graph of 

groups the completion of Rlime_l(y, a), and denote it Comp(Rlim)e-l(ze-1, a). 
We call the graph of groups the completed decomposition of 

Comp(Rlim)e_l (ze_ 1, a), and with it we naturally associate the completed rood- 
ular group (inherited from the modular group of Rlime-1 (y, a)). 

LEMMA 1.13: The g -  1-th limit group Rlime_l(y, a) (canonically) embeds into 
the completed limit group Comp(Rlim)e_ 1 (ze-1, a): 

Ue-l: Rlime_l(y, a) -~ Comp(Rlim)e_l(Ze-1, a). 

Furthermore, the quotient map ~e-~: Rlime_l(y,a) -+ Rlime(y,a) naturally 

extends to a quotient map: 

Comp(~)e_ l : Comp( Rlim)e_ l (ze-1, a) -+ Rlirne(y, a) = Fk. 

Proof'. The extension of the quotient map ~e-l: Rlirne_l(y, a) --+ Rlime(y, a) to 

a quotient map 

Comp(~)e-l : Comp( Rlim)e-l (Ze-1, a) --+ Rlime(y, a) = Fk 
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is natural from the construction of the completion. To construct the natural 

embedding of Rlime_l into the completion, Comp(Rlim)e_l, we look at the 

following example. 

Let Rlim~ = Fk, and let the abelian decomposition of Rlime_l be Rlime-1 = 
A*c  B, where C is cyclic, and A and B are some free groups. In this case the 

quotient map ~e_: maps A, B and C isomorphically into Fk. Let < cl > <  Fk 

be the maximal cyclic subgroup in Fk that  contains ~ - 1 ( C ) .  In this case the 

completion has the form 

Comp(Rlim)e_l = Fk*<c:> < cl, t > 

and the natural embedding vc-: maps Rlime_l isomorphically onto the subgroup 

~e-:(A) *<c:> t~e-l (B)t -1 

of the completion, Comp(Rlim)t_ 1. The generalization of the natural embedding 

/Yg--1 to an arbitrary g -  1 limit group is rather straightforward. | 

Although the image of Rlim~-l(y, a) in the completion 

Comp( Rlim)e_ 1 (Zg-- 1, a) 

under the canonical embedding V,_l can be expressed as words in the generators 

(Z~-l, a), we prefer to specifically note this image by changing the notation of 

the completion to Comp(Rlim),_ 1 (Z,_ 1, Y, a). 
We continue the construction of the completed resolution iteratively (bottom 

to top). At each step, i, we start with the completed limit group constructed at 

the lower level, Comp(Rlim)i+l(Zi+l, y, a), and its associated completed abelian 

decomposition, and construct Comp( Rlim)i( zi, y, a), its associated completed de- 
composition and completed modular groups, the natural embedding 

vi: Rlimi(y, a) --+ Comp(Rlim)i(zi, y, a) 

and the completed quotient map Comp(~)i: Comp(Rlim)i -+ Comp(Rlim)i+l. 
We start the construction of the completed limit group Comp(Rlim)i(zi, y, a) 

with the completed limit group Comp(Rlim)i+: (zi+:, y, a). Let A i be the abelian 

decomposition associated with the i-th limit group Rlimi(y,a) in the well- 

structured resolution Res(y,a). With each edge with abelian stabilizer that 

connects two non-abelian, non-QH vertex groups in the abelian decomposition 

Ai we associate a new generator ge. We set G1 to be a group generated by 

Comp(Rlirn)~+l(Z~+l,y,a) and all the new generators {g~} corresponding to 
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these edges in A i. To define G1 we further add commutant relations that force 

each of the new variables ge to commute with the centralizer of the image 

under vi+l o ~i of the abelian stabilizer of the edge it is associated with in 

Comp(Rlim)~+l(Zi+l,y,a), and with other generators g~, for which the image 

of the edge group associated with them in Comp(Rlim)i+l(Zi+l,y,a) can be 

conjugated to commute with the image of the edge group associated with g~ in 

Comp(Rlim)~+l(Z~+l, y, a). Hence, G1 is the fundamental group of a graph of 

groups having one (distinguished) vertex stabilized by Comp(Rlim)i+l(zi+l, y, a), 

and (possibly) a few other vertices with free abelian stabilizers, each connected 

to the distinguished vertex with a unique edge, and the stabilizer of that edge 

is the centralizer of the image of the corresponding edge group in A i in 

Comp(Rlim)i+l (Zi+l, y, a). 

We continue by modifying G~ by adding new generators associated with (non- 

cyclic) abelian vertex groups in A i. With each non-cyclic abelian vertex group 

Abn of rank n in the cyclic decomposition A i, we associate new generators 

abl,.. . ,  abe. We modify G1 by adding all the new generators to it, together with 

relations that force the subgroup of Abn generated by the edge groups connected 

to Abn in A i to be equal to its image under IAi+lOTli in Comp(Rlim)i+l(z~+l, y, a), 
and relations that force abl,.. . ,  abn to commute and to commute with the cen- 

tralizer of the image of the subgroup of Abn generated by the edge groups con- 

nected to Ab~ in A i in G1. Therefore, we end this second modification with a 

group G2 that  admits a canonical graph of groups composed of one vertex sta- 

bilized by Comp(Rlim)i+l(zi+l, y, a), and (possibly) several additional vertices, 

each stabilized by a non-cyclic free abelian group and connected to the vertex 

stabilized by Comp(Rlim)~+l(z~+l, y, a) by a single edge with abelian stabilizer. 

We continue by adding QH vertex groups corresponding to the QH vertex 

groups in A i to the group G2. Let Q1,..., Qu be the QH vertex groups in A i. Let 

Q~ , . . . ,  Q~ be the QH vertex group isomorphic to Q1 , - . . ,  Qu in correspondence. 

With G2 and the QH subgroups Q~ . . . .  , Q~ we associate a graph of groups, 

starting with the graph of groups associated with the group G2, and adding new 

vertices for each of the vertex groups Q~ , . . . ,  Q~. For each boundary component 

bd ~ of a QH vertex group Q}, we add an edge connecting the vertex stabilized 

by Q} to the vertex stabilized by Comp(Rlim)i+l(Zi+lY, a), and identifying the 

cyclic subgroup generated by bd' to the image in Comp(Rlim)i+l (Zi+l, y, a) under 

Ui+l o 7/i, of the corresponding boundary component bd of the QH vertex group 
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Qj in A i. 

vl v~ v~ 

[] 

Abl Ab~ 

A b ~  Q2' 

Performing all these operations, we end up with one graph of groups with 

abelian edge stabilizers, one (distinguished) vertex stabilized by 

Comp(Rlim)i+l(zi+ly, a), (possibly) a few vertices with free abelian vertex 

groups connected to the (distinguished) vertex with an edge with (maximal) 

cyclic stabilizer, and (possibly) a few vertices with QH vertex groups whose 

boundary components are all connected to the distinguished vertex. We call the 

fundamental group of this graph of groups, the completion of Rlimi(y, a), and 

denote it Comp(Rlim)i (zi, a). We call the graph of groups, the completed decom- 
position of Comp(Rlim)~ (z~, a), and with it we naturally associate the completed 
modular group (inherited from the modular group of Rlimi(y, a)). In a similar 

way to Lemma 1.13, with the completion of Rlirni(y, a) we associate two natural 

maps, a canonical embedding 

vi: Rlimi(y, a) -+ Comp(Rlim)i(zi, a) 

and a quotient map 

Comp(71)i: Comp(Rlim)i(zi, a) -+ Comp(Rlim)i+l (Zi+lY, a). 

Although the image of Rlimi(y, a) in the completion Comp(Rlim)i(zi, a) under 

the canonical embedding v~ can be expressed as words in the generators (zi, a), we 

prefer to specifically note this image by changing the notation of the completion 

to Comp(Rlim)i(zi, y, a). 
Finally, we say that Comp(Rlim)o(zo, y, a) is the completed limit group of the 

minimal rank well-structured resolution Res(y, a), and the sequence of completed 

limit groups Comp(Rlim)i(zi,y,a), 1 < i <_ 2, together with their associated 

completed decompositions is the completed resolution of Res(y, a), which we de- 

note Comp(Res)(z0, y, a). 

So far we have presented the construction of the completion for minimal rank 

well-structured resolutions Res(y, a). At this point we generalize the construction 

to an arbitrary well-structured resolution. 
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The terminal limit group of the well-structured resolution Res(y,a) is 

Rlime(y,a) -- F/k(e ) * H e. We start the construction of the completion of 

Res(y, a) by setting Comp( Rlim)~(ze, a) to be Comp( Rlim)e(z~, a) -- F[k(e ). We 
set G1 to be the free product of Comp(Rlim)e(ze, a) with those factors among the 

factors R~ -1 in the given free decomposition of Rlime_l (y, a) that are isomorphic 
to either non-abelian closed surface groups S~ tt-1 . . . . .  Sde~l_l ) or non-cyclic free 

abelian groups Abe- 1, AB e- 1 
• " " ' q ( g - - l ) "  

We continue the construction of the completion by considering the abelian 

decompositions associated with the various factors R~ -1 that are neither abelian 

nor closed surface groups. Let A~-1 be the abelian decomposition associated with 

such a factor R~ -1. With each edge e in one of the graph of groups A~ -1 that  

connects two non-abelian, non-QH vertex groups we associate a generator ge. Let 

G~ be the edge group associated with such an edge in A~ -x. We set the group 

G2 to be the group generated by G1 together with the additional elements {ge}. 

To define G2 we add relations which force each of the additional generators g¢ to 

commute with the maximal cyclic subgroup in Comp(Rlim)e(ze, a) that contain 

the image of G~ under ~?e-1, ~k-l(G~). For any pair of edges el,e2, for which 

~e-l(G~l) commutes with ~e-l(Ge2), we further add the relation [g~l, ge2] = 1. 
Hence, G2 is obtained from G1 by adding some free abelian groups amalgamated 

along (maximal) cyclic edge groups. 

We continue by modifying G~. by adding new generators associated with (non- 
~-1 cyclic) abelian vertex groups in the decompositions Aj . With each non-cyclic 

abelian vertex group Ab~ of rank n in a cyclic decomposition A~ -1 that is con- 

nected to some non-abelian vertex group by an edge with (maximal) cyclic sta- 

bilizer GAbn, w e  associate new generators abl, . . . ,  abn. We modify G2 by adding 
all the new generators to it, together with relations that force abl to be equal 

to the corresponding generator of ~te-l(Ab~) < Comp(Rlim)e(ze, a) < G2, and 
commutant relations that force the other new generators to commute with the 

centralizer in G2 of the image of Abn in Comp(Rlim)e(ze, a). Therefore, we end 

this second modification with a group G3 that admits a canonical free decompo- 

sition in which, with a single factor, we associate a graph of groups composed of 

one vertex stabilized by a factor of Comp(Rlim)e(ze, a), and (possibly) several 

additional vertices, each stabilized by a non-cyclic free abelian group and con- 

nected to the vertex stabilized by the factor of Comp(Rlim)e(ze, a) by a single 

edge with (maximal) cyclic stabilizer. 

We continue by adding QH vertex groups corresponding to the QH vertex 
e--1 groups in the decompositions Aj to the group G3. Let U1 *. . .* Ub be the most 
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refined free decomposition of G3 in which the images under r/e-1 of all the edge 
e-1 groups and all the non-QH vertex groups in the abelian decompositions Aj 

are elliptic. Let Q1 . . . . .  Qu be the QH vertex groups in the various graph of 

groups Aje-1. Let Q~, . . .  , Q~ be the QH vertex group isomorphic to Q1, .. • ,Qu 

in correspondence. With G3 and the QH subgroups Q1,.' • .,Qu' we associate a 

graph of groups, starting with the free decomposition U1 * "" * Ub of G3, and 

adding new vertices for each of the vertex groups Q~,. . . ,  Qu~. For each boundary 

component bd ~ of a QH vertex group Q~, we add an edge connecting the vertex 

stabilized by Q~ to the vertex stabilized by the vertex stabilized by the factor Us 
into which the corresponding boundary component bd of Qt is mapped by ~e-1. 

We further identify the cyclic subgroup generated by bd ~ with the image in Ub of 

the corresponding boundary component bd under rli. 

QI Q: 

[] [] 

We call the fundamental group of this graph of groups, the completion of 

Rlime_l(y,a), and denote it Comp(Rlim)e_l(ze_l,a). We call the graph of 

groups, the completed decomposition of Comp(Rlim)e_l(ze_l,a), and with it 

we naturally associate the completed modular group (inherited from the mod- 

ular group of Rlime_l(y,a)). In a similar way to Lemma 1.13, the f - 1-th 

limit group Rlirne_l(y, a) (canonically) embeds into the completed limit group 

Comp( Rlim)e_l (ze-1, a): 

P'~--I: Rlime_l(y, a) --+ Comp(Rlim)e_l(Ze_l, a). 

151rthermore, the quotient map ?]g-l: Rlime_l(y,a) --+ Rlime(y,a) naturally 
extends to a quotient map: 

Comp(~)e_l: Comp(Rlim)e_l(ze_l, a) --+ Rlime(y, a) = Fk. 

Also, we prefer to note the image of Rlime_l(y,a) in the completion 

Comp(Rlim)e_l(ze_l, a) under the canonical embedding ue-1, so we change the 

notation of the completion to Comp(Rlim)e_l (ze-1, y, a). 
As in the minimal rank case, we continue the construction of the completed res- 

olution iteratively (bottom to top). At each step, i, we start with the completed 

limit group constructed at the lower level, Comp(Rlim)i+l (zi+l, y, a), and its as- 

sociated completed abelian decomposition, and construct Comp(Rlim)i(zi, y, a), 
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its associated completed decomposition and completed modular groups, the natural 

embedding vi: Rlim~(y, a) --+ Comp(Rlim)i (z~, y, a), and the completed quotient 

map Comp(~)i: Comp(Rlirn)i -+ Comp(Rlim)i+l. 

We start the construction of the completed limit group Comp(Rlim)i (zi, y, a) 

with the completed limit group Comp(Rlim)i+l(Zi+l, y, a). We set G1 to be the 

free product of Comp(Rlim)~+l(Zi+l, a) with those factors among the factors R~ 

in the given free decomposition of Rlimi(y, a) that are isomorphic to either non- 

abelian closed surface groups S~, . . . ,  S~(i), or to abelian groups Abil . . . . .  Abiq(~). 

We continue the construction of the completion by considering the abelian 

decompositions associated with the various factors R~ that are neither abelian 

nor closed surface groups. Let A~ be the abelian decomposition associated with 

such a factor R}. With each edge e in one of the graph of groups A} that  connects 

two non-abelian, non-QH vertex groups we associate a generator ge. Let Ge be 

the edge group associated with such an edge in A~. We set the group G2 to be 

the group generated by G1 together with the additional elements {ge}. To define 

G2 we add relations that force each of the additional generators g~ to commute 

with the centralizer of the image (under ~i+1 o ~i) of the associated edge group 

Ge in Comp(Rlirn)+li(zi+l, y, a), Yi+l o ~i(G~). For any pair of edges e~, e2, for 

which Vi+l o ~i(G~l ) (can be conjugated to) commute with V~+l o ~i(G~:), we 

further add the relation [gel, g~2] = 1. Hence, G2 is obtained from G1 by adding 
some free abelian groups amalgamated along (non-trivial) subgroups of smaller 

rank. 

We continue by modifying G2 by adding new generators associated with (non- 

cyclic) abelian vertex groups in the various abelian decompositions A~. With 

each non-cyclic abelian vertex group Abn of rank n in one of the abelian decom- 

positions Ai~ that  is connected to some non-abelian vertex group, we associate 

new generators abl . . . .  , abn. We modify G2 by adding all the new generators 

to it, together with relations that  force the subgroup of Abn generated by the 

edge groups connected to Abn in A} to be equal to its image under Vi+l o ~i in 

Comp(Rlim)i+l (zi+l, y, a), and relations that force abl, . . . ,  abu to commute and 

to commute with the centralizer of the image of the subgroup of Ab~ generated by 

the edge groups connected to Ab~ in A} in G2. Therefore, we end this part with a 

group G3 that  admits a canonical free decomposition in which with a single factor 

we associate a graph of groups composed of one vertex stabilized by a factor of 

Cornp(Rlim)i+l(Zi+l, y, a), and (possibly) several additional vertices, each sta- 

bilized by a non-cyclic free abelian group and connected to the vertex stabilized 

by the factor of Comp(Rlim)i+l(zi+l, y, a) by a single edge with (non-trivial) 
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abelian stabilizer. 

We continue by adding QH vertex groups corresponding to the QH vertex 

groups in the decompositions A / to the group G3. Let U1 * . . .  * UD be the most J 
refined free decomposition of G3 in which the images under ui+l o ~i of all the 

edge groups and all the non-QH vertex groups in the abelian decompositions A} 

are elliptic. Let Q1 . . . . .  Q~ be the QH vertex groups in the various graph of 

groups h}. Let Q ~ , . . . , Q ~  be the QH vertex group isomorphic to Q1 , - - - ,Qu  

in correspondence. With G3 and the QH subgroups Q~ , . . . ,  Q~ we associate a 

graph of groups, starting with the free decomposition U1 * . . .  * Ub of G3, and 

adding new vertices for each of the vertex groups Q ~ , . . . ,  Q~. For each boundary 

component bd' of a QH vertex group Q~, we add an edge connecting the vertex 

stabilized by Q~ to the vertex stabilized by the vertex stabilized by the factor 

U~ into which the corresponding boundary component bd of Qt is mapped by 

Ui+l o Ui. We further identify the cyclic subgroup generated by bd ~ with the 

image in Ub of the corresponding boundary component bd under Ui+l o 7ti. 
We call the fundamental group of this graph of groups, the completion of 

Rlim~(y,a), and denote it Comp(Rlim)i(zi,a). We call the graph of groups, 

the completed decomposition of Comp(Rlim)i(zi,a), and with it we naturally 

associate the completed modular group (inherited from the modular group of 

Rlimi(y, a)). In a similar way to Lemma 1.13, the i-th limit group Rlimi(y, a) 
(canonically) embeds into the completed limit group Comp(Rlim)i (zi, a): 

v i: Rlimi(y, a) --+ Comp(Rlim)i(zi, a). 

Furthermore, the quotient map ~i: Rlimi(y,a) --+ Rlimi+l(y,a) naturally 
extends to a quotient map 

Comp(~)i: Comp(Rlim)i (zi, a) --+ Comp(Rlim)i+l (zi+l, y, a). 

Also, we prefer to note the image of Rlimi(y,a) in the completion 

Comp(Rlim)i (zi, a) under the canonical embedding ui, so we change the notation 

of the completion to Comp(Rlim)i (z~, y, a). 
Finally, we say that Comp(Rlim)o(zo, y, a) is the completed limit group of the 

minimal rank well-structured resolution Res (y, a), and the sequence of completed 

limit groups Comp(Rlim)i (zi, y, a), 1 < i < ~, together with their associated com- 
pleted decompositions is the completed resolution of Res(y, a), which we denote 

Comp(Res)(zo, y, a). 

The following are some basic properties of the completion of a well-structured 

resolution. All follow in a rather straightforward way from the construction of 
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the completion, so we omit their proof. Still, they are crucial in obtaining formal 

solutions defined over the completion of a well-structured resolution of a restricted 

limit group. 

LEMMA 1.14: Let Res(y,  a) be a well-structured resolution of a restricted limit 

group Rlim(y,  a), and let Comp(Res)(z ,  y, a) be its completed resolution. Then: 

(i) I f  we replace each of the completed limit groups Comp( Rlim)i  (z, y, a) with 

the group Comp(Rl im)i (z ,  y, a) * H i, and change the completed quotient 

map Comp(~)i accordingly (i.e., Comp(~)i will map the additional free 

factor H i isomorphically onto a factor of H i+1, and the additional surface 

and abelian factors onto factors of Hi+l) ,  then the completed resolution 

Comp( Res ) ( z, y, a) is a well-structured resolution. 

(ii) A generator of a cyclic edge group connecting two non-QH vertex groups 

in the completed decomposition of one of the factors of the completed limit 

group C omp( Rl im) i ( z, y, a) for some i is projected by some composition of 

maps 

Comp(,)i o . . .o  Comp( )i,: Comp( Rli, )i(z, a) 

-+ Comp(Rl im)i ,_ l  (z, y, a) 

to either an element with no root that is not contained in one of the fac- 

tors of Comp(Rl im)i , (z ,  y, a), a hyperbolic element with no root in the 
completed decomposition of C omp( Rl im )i, (z, y, a), or to a non-boundary 

element with no root in a QH vertex in a completed decomposition. 

(iii) The subgroup < y ,a  >< Comp(Rl im) ( z , y ,a )  is mapped onto 

Comp(Rlim)~ -- F~rk(e) by the composition of the quotient maps. The 

rank of the completed resolution, Comp( Res(z ,  y, a) ), is at most the rank 

of the well-structured resolution Res(y, a). 

(iv) For any specialization (Yo, a) of the restricted limit group Rlim(y,  a) that 

factors through the resolution Res(y, a), there exists some specialization zo 

so that (zo,Yo, a) is a specialization of the completed limit group 

Comp(Rl im)(z ,  y, a) that factors through the completed resolution 

Comp(Res)  (z, y, a). 

Completed resolutions are defined in order to enable one to construct formal 

solutions. If all the decompositions associated with the various levels of a well- 

structured resolution contain no (non-cyclic) abelian vertex groups, then it is 

indeed possible to construct formal solutions defined over the completed resolu- 

tion. However, in the presence of (non-cyclic) abelian vertex groups we still need 



Vol. 134, 2 0 0 3  DIOPHANTINE GEOMETRY OVER GROUPS II 215 

to define a closure of a resolution, and a finite collection of such closures which 

forms a covering closure. 

De~nition 1.15: Let Res(y,a) be a well-structured resolution and let 

C omp( Res ) ( z, y, a) be its completion. 

Let Abl , . . . ,  Abd be the non-conjugate, non-cyclic, maximal abelian subgroups 

that  appear  along the completion, Comp(Res)(z, y, a), and are mapped onto a 

non-cyclic abelian factor in a free decomposition associated with one of the levels 

of the completion. 

Let PAbl , . . . ,PAbpd be the non-conjugate, non-cyclic, maximal pegged 

abelian groups that  appear  along the completed resolution, i.e., maximal non- 

cyclic abelian subgroups in Comp(Rlim)(z,  y, a), that  are mapped onto a non- 

cyclic abelian vertex group in some abelian decomposition associated with some 

level of the completed resolution Comp(Res)(z, y, a), and this abelian vertex is 

connected to the other vertices of the completed decomposition of that  level by 

an edge with (maximal) cyclic stabilizer. We call the maximal cyclic subgroup of 

a pegged abelian group connecting it to the other vertices of the corresponding 

completed decomposition, the peg of the pegged abelian group PAb. 

Let S I , . . . , S d  be free abelian groups so that  Abl < $1 . . . . .  Abd < Sd are 

subgroups of finite index. Let PS1 . . . . .  PSpd be free abelian groups so that  

PAbl < PSI , . . . ,PAbpd < PSpd are subgroups of finite index, and the pegs 

peg1 . . . . .  pegpd are primitive elements in the ambient free abelian groups 

PSI,  . . . , PSpd. 

A closure of the completed resolution Comp(Res)(z, y, a) is obtained by replac- 

ing the free abelian groups Abl . . . . .  Abd by the free abelian groups $1 . . . . .  Sd, 
and the pegged abelian groups PAbl . . . . .  PAbpd by the free abelian groups 

PS1 . . . . .  PSpd in correspondence, along the entire completed resolution, i.e., 

from the top level through the bo t tom level in which a subgroup of the pegged 

abelian group appears along the completed resolution. We say that  the free 

abelian groups $ 1 , . . . ,  Sd and PS1, . . . ,  PSpd a r e  the extension of the pegged 

abelian groups PAbl , . . . ,  PAbpd in correspondence. We denote a closure of the 

completed resolution by Cl(Res)(s, z, y, a), and the corresponding limit group by 

Cl(Rl im)(s ,z ,y ,a) .  Naturally, Comp(Rlim)(z ,y ,a)  is embedded in 

Cl(Rlim)(s, z, y, a). 

By construction, properties (i)-(iii) of Lemma 1.14 which are valid for the 

completion remain valid for a closure. However, in general only a subset of the 

specializations that  factor through a resolution can be extended to specializations 

that  factor through a closure of it. Therefore, we need to generalize what we did 
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in Propositions 1.8 and 1.9 for free abelian groups and define a covering closure. 

Definition 1.16: We will keep the notation of Definition 1.15. Let Res(y, a) be 

a well-structured resolution and let Comp(Res)(z,  y, a) be its completion. With 

each closure, Cl(Res)(s,  z, y, a), there are associated embeddings of abelian and 

pegged abelian groups into their extensions: 

Abl < $1 . . . .  , Abd ( Sd, PAbl < P S h . . . ,  PAbpd < PSpd. 

Like in Proposition 1.8, with each embedding Abj < Sj we can associate a 

subgroup Cj of the free abelian group of rank rk(Abj), and like in Proposition 

1.9, with each embedding P A B j  < PSi  we can associate a Diophantine system 

of r k (P A B j )  - 1 equations in rk (PABj )  - 1 variables (with coefficients), with 

non-zero determinant. With this system we can associate a coset Coy of a finite 

index subgroup Uj of the free abelian group Z rk(pABj)-I (see Propositions 1.8 

and 1.9). Therefore, with each closure Cl(Res)(s,  z, y, a) we can associate a tuple 

(C1 , . . . ,  Cd, C o l , . . . ,  COpd) of cosets of finite index subgroups in the correspond- 

ing free abelian groups. We call this collection of cosets, the closure domain, and 

denote it by Dom(Cl(Res)) .  

We say that  a collection of closures of a resolution Res(y, a), 

{ C l ( R e s ) l ,  . . . ,  Cl(Res)q}, 

is a covering closure if the union of the closures domains 

Dom( Cl( Res)l) ,  . . . , Dom( Cl( Res)q) 

covers the entire cross product of the abelian and pegged abelian groups 

Abl, . . . , Abd, P Abl, . . . , P Abpd. 

The main importance of a covering closure is the following simple observation. 

LEMMA 1.17: Let Cl(Res)l(s ,  z, y, a) . . . .  , Cl(Res)q(S, z, y, a) be a covering clo- 

sure of a well-structured resolution Res(y, a). For any specialization (Y0, a) that  

factors through the resolution Res(y,a) there exists an index i and elements 

so, zo, so that  (so, z0, Y0, a) is a specialization of (at least) one of the closures 

C l ( R e s ) i ( s ,  z ,  y ,  a ) .  

Proof'. By Lemma 1.14, for any specialization (Y0, a) that  factors through the 

resolution Res(y, a) there exists some element z0 so that  (Zo, Y0, a) is a special- 

ization that  factors through the completed resolution Comp(Res)(z ,y ,  a). By 
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definition, every specialization (z0, Y0, a) tha t  factors th rough  the complet ion can 

be extended to a specialization (so, z0, Y0, a) tha t  factors th rough  one of the clo- 

sures Cl(Res)l(s ,  z, y, a)l  . . . . .  Cl(Res)q(S, z, y, a), and the lemma follows. | 

The complet ion of  a resolution Comp(Res) (z, y, a), its closures 

Cl(Res)(s ,y ,  a), and the notion of a covering closure finally allow us to gen- 

eralize Merzlyakov's theorem for free groups and Proposit ions 1.3, 1.8 and 1.9 

for surface and free abelian groups, to present formal solutions associated with a 

well-structured resolution of a restricted limit group. 

THEOREM 1.18: Let Fk =< al . . . . .  ak > be a free group, and let 

u l ( y ,  a ) , . . . ,  urn(y, a) be a collection of words in the alphabet {y, a} for which the 

group Rlim(y,  a) =< y, a[ul(y, a) . . . . .  urn(y, a) > is a restricted limit group. Let 

Res(y, a) be a well-structured resolution of the restricted limit group Rlim(y,  a), 

and let Comp(Res)(z,  y, a) be the completion of the resolution Res(y, a) with a 

corresponding completed limit group C omp( Rl im ) ( z, y, a). 

Let Wx(x,y,a) -- 1~... ,ws(x ,y ,a )  = 1 be a system of equations over Fk and 

let v l (x ,y ,a )  . . . . .  v~(x,y,a) be a collection of words in the alphabet  {x ,y ,a} .  

Suppose that the sentence 

Vy (u l ( y , a )=  l . . . . .  u ,~(y ,a)= l) 3x w l ( x , y , a ) =  l . . . . .  w s ( x , y , a ) =  lA 

AVl(x,y,a)  5 £ 1 , . . . , v r ( x , y ,a )  :fi 1 

is a truth sentence. 

Then there exists a covering closure 

Cl(Res)l(s ,  z, y, a) . . . . .  Cl(Res)q(S, z, y, a), 

and for each index 1 < i < q there exists a formal solution xi(s, z, y, a), so that 

each of the words wj(xi(s ,  z, y, a), y, a) is the trivial word in the restricted limit 

group corresponding to the i-th closure Cl( Rlim)i(s ,  z, y, a). 

In addition, for each index i there exists a specialization ~ J (So, ~o, Y~, a) that 
factors through the i-th closure Cl( Res)i(s, z, y, a), so that for every index j 

vj(xi(s~, Zio, y~,a),y~,a) • 1. 

Furthermore, i f  the limit group Rlim(y,  a) is not abelian, and the words 

e l ( x ,  y, a) . . . . .  Ws(X , y, a), vl(x, y, a) . . . . .  vr(x, y, a) 

are coefficient-free, then the formal solutions x = xi(s, z, y, a) can be taken to be 

coefficient-free, i.e., x = xi(s, z, y). 
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Proof: Our approach to proving the existence of formal solutions defined over 

a closure of a well-structured resolution of a general limit group is basically a 

combination of our approach to proving the existence of formal solutions for free 

groups (Theorems 1.1 and 1.2), surface groups (Theorem 1.3) and free abelian 

groups (Propositions 1.8 and 1.9). Like in these theorems we start with defining 

test sequences associated with the completion Comp(Res)(z ,  y, a) of the given 

resolution Res(y, a). We start the construction of test sequences with a general- 

ization of Lemma 1.4 to punctured surfaces (rather than closed ones). 

LEMMA 1.19: Let S be a punctured surface with fundamental group Q, suppose 

that X(S) ~_ - 2  or S is a punctured torus, and let b'rl . . . .  , brw be its boundary 

components. Let #: Q -+ Fk be a homomorphism with non-abelian image, and 

suppose that for each i, 1 < i < w, #(bri) ~ 1. 

There exist two collections of essential, non-homotopic, non-boundary parallel 

disjoint s.c.c, on the surface S: bl . . . .  , bq and d l , . . . ,  dr, and an automorphism 

p C Aut (S)  with the following properties: 

(i) Each connected component S obtained by cutting the surface S along the 

first collection of s.c.c, b l , . . . ,  bq has Euler charactersitic -1, and the homo- 

morphism # o p: Q --+ Fk embeds the fundamental group of  each of these 

connected components into Fk. 

(ii) Each of the curves di intersects non-trivially at /east  one of the curves bj. 

(iii) The entire collection of s.c.c, b l , . . . ,  bq, d l , . . . ,  dt fill the punctured sur- 

face S, i.e., S \ U { b l , . . . ,  b e, d l , . . . ,  dr} is a disjoint collection of connected 

components, where each connected component is either homeomorphic to a 

disk or to an annulus. I f  such a component is homeomorphic to an annulus, 

then one of its boundary components is one of the boundary components 

of the surface S, br~. 

Proo[: Similar to the proof of Lemma 1.4. | 

Suppose that the completed resolution Comp(Res) (z ,y ,a)  is given by the 

sequence of epimorphisms 

Comp(Rl im)(z ,  y, a) = Comp(Rlim)o(Z, y, a) --+ Comp(Rl im) l ( z ,  y, a) --+... 

• .. ~ Comp(Rlim)e(z,  y, a) = F = <  f,  a > 

where ~.i: Comp(Rl im) i ( z , y ,a )  -+ Comp(Rl im) i+l (z ,y ,a) ,  1 < i < t ~, are the 

associated quotient maps, and suppose that the terminal free group in the com- 

pleted resolution Comp(Res)(z ,  y, a) is F = <  a l , . . . ,  ak, f l  . . . .  , fc >. 
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To construct test sequences associated with the completed resolution 

Cornp(Res)(z, y, a) we fix a (bottom to top) order of the (punctured and closed) 

QH subgroups that appear in the completed abelian decompositions associated 

with the various levels of the completed resolution Comp(Res)(z,y, a), and a 

(bottom to top) order of the non-cyclic abelian factors and pegged abelian ver- 

tex groups that appear in these abelian decompositions. 

For each QH-vertex group QHi in the completed abelian decomposition of 

one of the completed limit groups Comp(Rlim)i(z, y, a), we fix a finite set of 

essential, non-boundary parallel s.c.c, b~,. . . . . . ,  b~, d~l, , d it~ that satisfy the topo- 

logical properties of Lemma 1.19. With each of the completed restricted limit 

groups Comp(Rlim)i(z, y, a) we associate a preferred system of generators, the 

one inherited from a fixed system of generators of the completed limit group, 

Comp(Rtirn)(z, y, a). We further fix a set of generators for each of the (pegged) 

abelian groups and each of the QH vertex groups that  appear in the completed 

abelian splittings associated with the various levels of the completed restricted 

resolution Cornp(Res)(z, y, a). 

For each QH subgroup QHi that appear in one of the abelian decompositions 

along the completed resolution Comp(Res)(z, y,a), let ~ . . . . .  ~q~ be the auto- 

morphisms of QH.i that  correspond to Dehn twists along the (we-chosen) s.c.c. 

b~,. b i and let ' ~  ~P~ be the automorphisms of QHi that correspond 
' ' '  q i '  ' ' ' ' '  

to Dehn twists along the (pre-chosen) s.c.c, dil, d i in correspondence. In 
" " " ' ~ i  

a similar way to the construction of quadratic test sequences (Definition 1.5), 

we define the following sequences of automorphisms of the surface group QHi, 
i i ," .. {u~, w;~}, iteratively. We set v~ = id., and u~ to be 

i i t ~i'1 ~,1 
= o o . . . o  

For every index n > 1 we define r~ to be 

T ~  . i , n  • i , n  • ~ i , n  i 
= o o . . . o  o 

and 
i ---- • i , n  • i , n  . i , n  i 

"n o(e;)e  oTn.  

Like in the case of a quadratic limit group (Theorem 1.3), our aim in defining 

the sequence of automorphisms { u~, T~ } is to guarantee that any action of the QH 
subgroup QHi, obtained as a limit of a converging subsequence of a test sequence 

of the ambient completed limit group Comp(Rlim)(z,y,a), is a minimal IET 

action of the subgroup QHi on the limit real tree. To obtain that goal we need 
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i , n  i , n  to restrict the sequences of p o w e r s  {~j , mj } used in the iterative definition of 

the sequences i {u~, v;~} to satisfy certain combinatorial conditions. 

Let X be the Cayley graph of the free group Fk = <  a l , . . . , a k  >, let Y be 

the Cayley graph of the completed limit group Comp(Rlim)(z ,  y, a), let (T~, t b ) i  i 

be the Bass-Serre tree corresponding to the decomposition of the QH subgroup 

QHi along the collection of s.c.c, b~, b i and let (T i t i ~ be the Bass-Serre tree 
" " " ~ q i  ' \ d~ d !  

corresponding to the decomposition of the QH subgroup QHi along the collection 

of s.c.c, d/l, • • •, dit~. We denote by dx,  dy,  dT~ , and dTj ~ the natural (simplicial) 

metrics on X,  Y ,  T~, and T~ in correspondence. For every element g C QHi we 

= ~d(g) = dT~ (g(tid), t~d)" If g acts hyperbolically on T~ set ~(g)  dT~(g(t~),tib), i 
we denote by try(g) the trace of the action of g on T~, and similarly if g acts 

hyperbolically on T~ we denote its trace by trial(g). For an element f E Fk, let 

t r x ( f )  be the length of a cyclically reduced element that is conjugate to f in Fk, 

i.e., the "length" of the conjugacy class of f in Fk. 

Let QHi = <  y~ , . . . ,  y~ >, and suppose that each yj can be written in a normal 

form yj = a 1. a 2 . . . .  at~ (y~) with respect to the graph of groups corresponding to 

the decomposition of the (punctured or closed) surface Si (with fundamental 
• . d i group QHi) associated with the curves d ~ , . . ,  t~- 

Let P R  ~ be the set of all prefixes of the words alyja2y~ . . . a  ~(y~) for all j ,  
• . y ~  

1 _< j _< si. We set R ~ = 1 and R'~ to satisfy 

R "~ >_ 2. m a x  dy(u,  id.) 
u C p R ~  

where R ~ is the size of the ball whose elements are going to be "controlled" by 

the automorphism u~ of QH~. Setting R~ ,  we define the set H Y  ~ to be 

HY'¢  = {g C QHildy(g,  id.) < n ~ A 0 < try(g)} 

and the set N F  ~ to be 

i NF"~ = {g E QHi[dy(g, id.) <_ R"~ A0 < gd(g)}" 

We define the constants R ¢~ and R"~ iteratively. For each g C QHi for which 

dy(g, id.) < R ~-1 let 

gn(u~_l (g)) •i--1 (g) ---- e l  2 ,:,_1 (g)%:,_ ~ (g) • • • %~_~ (g) 

be a normal form of V/_l(g) with respect to the graph of groups corresponding 

to the decomposition of the surface Si by the curves b/l , . . . ,  b~. 
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gn(uin_l (g)) 
Let PR~-~ be the set of all prefixes of the words a 1 • a 2 

for all g E QHi for which dr(g,id.)  <_ R ~-1 . We set R ~¢~ to satisfy 

R ~ > 2. max dy((v~_l) - l (u) , id . )  
- -  uEpR~ 

where R ~ is the size of the ball whose elements are going to be "controlled" by 

the automorphism ~'~ of QHi. Setting R ~ ,  we define the set H Y  r~ to be 

H Y  ~ = {g C QH~ldy(g, id. ) <_ R ~ A0 < tr~(4_,(g)) } 

and the set N F  ~ to be 

i i N F  ~" = {g E QSi]dy(g, id.) <_ R ~; A 0 < Q(v~_l(g))  }. 

Similarly, for each g C QHi for which dr (g ,  id.) < R ~ let 

T~(g) = a 1 a 2 . . - a  e~(~(g)) 

be a normal form of Vin(g) with respect to the graph of groups corresponding to 

the decomposition of the surface Si by the curves d~ , . . . ,  d~. 

Let P R  ~ be the set of all prefixes of the words a 1 a 2 .en(~(9)) for all 

g E QHi for which dy(g, id.) <_ R~-~,. We set R '~ to satisfy 

R ~ > 2. max dy((7:~i~)-l(u),id.) 
uEPR'~ 

where R ~  is the size of the ball whose elements are going to be "controlled" by 

the automorphism v~ of QHi. Setting R '~ ,  we define the set H Y  ~ to be 

i i H Y  ~: = {g e Qgi]dy(g, id.) <_ R ~: A 0 < trd(Vn(g)) } 

and the set NF':~ to be 

i i NF'~  = {g C QHddy(g,  id. ) < R ' ,  A0 < ~g(Vn(g))}. 

Detlnition 1.20: Let {v~,Vn/} be sequences of autolnorphisms of each of 

the QH subgroups QHi that  appear in the abelian decompositions associated 

with the various levels of the completed resolution Comp(Res)(z ,y ,a) .  Let 

A,~: Comp(Rlim)(z,  y, a) --4 Fk be a sequence of homomorphisms that  factor 

through the completed resolution Comp(Res)(z,  y, a). Let 

F = <  a l , . . . , a k ,  f l  . . . .  , fc  > 
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be the terminal free group of the completed resolution C o m p ( R e s ) ( z ,  y, a). 

For every QH vertex group QHi ,  every index n and every g E N F  ~ let 

u~_l(g ) = a 1 a 2 e~(,~_lO)) 
-~_~(g) ~_~(9) " " a ~ _ ~ O )  

be the previously chosen normal form of v /_ l (g)  with respect to the decompo- 

sition of Q H i  corresponding to the Bass Serre tree Tb. For every h E N F " ~  

let 
~-~(h) = a 1 a 2 en(~(h)) 

r~(h) ~-~(h)' ' 'a.r~(h) 

be the previously chosen normal form of ~-~(h) with respect to the decomposition 

of QHi  corresponding to the Bass-Serre tree Tj. For each positive integer m we 

set 

a a a ab+la a2b+la . .. ~rnbTl~ 
f l ( m )  = t 2 1 2 1 1 1" "tel te2 t e l , ' . . ,  

fb (m)  alabala~bal (m+l)b ---- • • " a la  2 al. 

We say that  a sequence of automorphisms {v~, r~} of the QH vertex groups Q H i  

together with the sequence of homomorphisms An: C o m p ( R l i m ) ( z ,  y, a) -+ Fk is 

a test sequence for the completed resolution C o m p ( R e s ) ( z ,  y, a) if the following 

conditions hold• 

In a similar way to quadratic test sequences (Definition 1.5), for every QH 

subgroup QHi  that  appear  in one of the abelian decompositions associated with 

the completed resolution C o m p ( R e s ) ( z ,  y, a): 

(i) For n > 1 and every b}, 1 _< j < qi: 

• ' r n " ~  2 n max e~b~ tr~d((b}) ~ ) > 1 0 0 •  " a , , ,  
l<j<_ql 

(ii) For n_> 1 and every d}, 1 <_ j <_ ti: 

2 n max e~(d~) tr~b((~)5 ) > 1 0 0 .  • ~- ~- 
l<j<_tl 

(iii) For every n > 1 and every g,g~ E N F ~ :  

i i i i ! 
ed(r~(g))eb(Vn-l(g )) 

i i / i i 
ed(T~(g ) ) e b ( t l n - l ( g ) )  

(iv) For every n > 1 and every g C H Y ~ :  

E f i  tap dt ~_l(9)J" 
i dy (g,id. ) <_R~ ~ ,p~_en(g ) 

E fd(aPuh))" 
• t , i  dy ( h,~d. ) ~_R ,~ ,j <_en( h ) 

1 
- 1  < 100 . qi . 2 n. 

'l tr~('ri(g))eib(v~-l(g)) - 1 < 

I e (T O))t 100- qi " 2 n 
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(v) For every n _> 1 and every h, h' E N F  "~ : 

D I O P H A N T I N E  G E O M E T R Y  O V E R  G R O U P S  II 

i i i i t 
eb(Pn(h))ed(Tn(hi i t i i )~ - 1 < 
eb(.n(h ))ed(,a(h)) 

p i 
(vi) For every n _> 1 and every h G H I  "n : 

100. qi " 2 n 
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i i i i I trb(un(h))~d(Tn(h)) -- I < 1 

(vii) There exist constants c:, c~ > 0 so that  for every n > 1 and every h, h' C 

N F ~  : 
~ ( u i  (h))dx(An(h'), id.) 

c: < dx(An(h), id.)~(u~(h'))  < c2. 

(viii) There exist constants c3, c4 > 0 so that  for every n > 1 and every h C HY':~ : 

tr~ (pin (h) )dx (An (h), id.) 
c3 < t.rx(An(h))g~(pi(h)) < c4. 

(ix) For every index n, the restriction of the homomorphism An to the QH 

subgroup QHi, An: QHz -+ Fk, cannot be factored as An = 7 o 7r, where 

7r: QHi --+ Q is an embedding of QHi into the fundamental group of a 

surface S finitely covered by the surface S i (with fundamental group QHi), 
and 7: Q -~ Fk is a homomorphism, i.e., the homomorphism An: Q --~ Fk 

cannot be extended to a surface covered by S. 

In addition to properties (i)-(ix) we need to restrict the images of the genera- 

tors { f : , . . . ,  fb} of the terminal free group F under the homomorphisms An, and 

to further restrict the ratios of the sizes of elements from different QH and abelian 

vertex groups to be in accordance with the (fixed) order previously defined on 

these vertex groups. 

(x) For each index n, An(fl) = f l (mn)  . . . .  , An(fb) = fb(mn) where n < mn < 

m n + l .  

(xi) We have already fixed an order on the non-cyclic abelian factors and 

pegged abelian vertex groups in the completed abelian splittiugs, so let 

A b l , . . . ,  Abd be the non-cyclic abelian factors that  a pear in the free decom- 

positions associated with the various levels of the completion, Comp(Res),  
and PAbl  . . . .  , PAbpd be the pegged abelian groups that  appear  in the com- 

pleted abelian splittings associated with the various levels of the completed 

resolution Comp(Res)(z ,  y, a). Let g(i) be the level of the completed res- 

olution Comp(Res) (z ,y ,a)  in which an abelian factor Abi appears, or a 

pegged abelian group PAbi appears as a vertex group. Let Bi(n) be the 
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set of all elements g c Comp(Rlim)(z,y,a), so that  dy(g, id.) <_ n, and 

either g C Comp(Rlim)~(i)+l(z,y,a) or g E Aby or g E PAbj for some 

abelian or pegged abelian groups, Abj or PAbi, which are lower in the 

order defined on the abelian and pegged abelian groups in the completed 

resolution Comp( Res)(z, y, a). 
We have also fixed bases for the non-cyclic abelian factors and pegged 

abelian groups that  appear in the completed abelian splittings, so let 
• i i i q~, . . . ,  q~ be a pre-chosen basis of the abelian factor Abi, or q0, q l , - . - ,  qd~ 

be the pre-chosen basis of PAbi, where q~ is the peg of the pegged abelian 

group PAbi. 
Let disti(n) be disti(n) = max{dx(An(g),id.)lg E Bi(n)}. In case the 

abelian group in question is a pegged abelian group PAbi, we choose An (qj) 

to commute with An(q~) and 

n .  dis t i (n)  < dx (An(q l ) ,  id.), n .  d x  (~n(ql), id.) < dx(An(q~),  id.) . . . .  

. . . ,  n .  dx(An(qid,_l), id.) < dx(An(qid,), id.). 

If the abelian group in question is a non-cyclic abelian factor Abi, 
we set hi(n) = f l(n • disti(n)). We further set each of the elements 

An (ql) . . . .  , An (q~) to commute with hi (n), and 

n . Ih~(n)] < d x (  An(ql),  id.), n . d x (  A~(ql), id.) < d x (  An(ql),  id.) . . . .  
i . . . ,  n .  dx(An(qd~_l), id.) < dx(An(q~d~), id.). 

(xii) Let QHi be a QH vertex group in the completed abelian splitting of 

Comp(Rlim)~(i) (z, y, a). 

We have already fixed an order of the QH vertex groups in the completed 

abelian splittings of Comp(Rlim)~(i)(z,y,a). Let QBi(n) be the set of 

all elements g E Comp(Rlim)(z,y,a), so that  dy(g, id.) <_ n, and either 

g C Comp(Rlim)~(i)+l(z,y,a) or g C Abj or g E PAbj for some non- 

cyclic abelian factor Abj, or a pegged abelian group PAbj in the abelian 

decomposition associated with Comp(Rlim)e(i)(z, y, a) or g C QHj for 

some QH subgroup QHj which is lower in the order defined on QH ver- 

tex groups in the completed resolution Comp(Res)(z, y, a). Let Qdisti(n) 
be Qdisti(n) = max{dx(A~(g),id.)19 C QBi(n)}. Then for each element 

c E QHi so that  dy (c, id.) <_ n and c corresponds to a non-boundary par- 

allel curve on SQH~, the (punctured) surface corresponding to QHi: 

n.  Qdisti(n) < dx (An(c), id.). 
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(xiii) 

(xiv) 

Let c E QHi and suppose dy(c, id.) < n. I fc  corresponds to a non-boundary 

parallel curve in SQH~, the (punctured) surface corresponding to QHi, and 

c has no roots in QHi; then An(c) generates a maximal cyclic subgroup in 

Fk. 
For every index n and every peg q~ of a pegged abelian group PAbi in one 

of the levels of the completed resolution, Comp(Res)(z,  y,a), An(q~) is a 

primitive element in Fk. 

LEMMA 1.21: There exist test sequences for every given completed resolution 

C omp( Res ) ( z, y, a ). Furthermore, given any two integers S l < s2 we can choose 

the n-th specialization of a basis element of some (pegged) abelian group Abt 

or PAbt that appears in one of the completed abelian decompositions associated 

with the various levels of completed resolution C omp( Res ) ( z, y, a ) , An ( qt ), for 

some r > 1, to be of the form An(qtr(n)) = u ms2+sI for some integer m, where u 

has no non-trivial roots in Fk. 

Prod: The construction of a test sequence for a general completed resolution is 

a combination of the constructions of free, quadratic, and abelian test sequences 

presented in the proofs of Theorems 1.1, 1.3 and 1.8 in correspondence. We start  

by applying Lemma 1.6 to construct a sequence of automorphisms {(v~, T~)} 

that  satisfy properties (i) (vi) for each of the QH subgroups QHi that  appear in 

the abelian decompositions associated with the various levels of the completed 

resolutions Comp(Res)(z,  y, a). 

We construct the homomorphisms An: Comp(Rl im)(z ,y ,a)  ~ Fk iteratively 

from bot tom to top. First we set An(fl) : f l (m~)  . . . .  , A n ( f b )  = f b ( m n ) ,  for some 

m~ > m ~ - i  that  will be specified in the sequel. Hence, property (x) is fulfilled. If 

Comp(Rlim)e_~(z, y, a) is the completed limit group that  lies above the bo t tom 

one, then if we choose ?7"L n t o  be large enough, the image under the (completed) 

map Comp(~)e-l: Comp(Rlim)~_l(z ,y ,a)  --+ Fk of all the edge groups that  

appear in the abelian decomposition associated with Comp(Rlim)e_l(Z, y, a) is 

non-trivial and primitive, and the image of all the QH vertex groups that  appear 

in this abelian decomposition is non-abelian. 

We set An: Comp(Rlim)t_l  (z, y, a) -+ Fk as follows. On Comp(Rlim)e(z,  y, a) 

= <  f l  . . . . .  fb > we have already defined the homomorphism An, and we denote 

this restriction of An as A F. We continue by defining An iteratively on each of 

the abelian vertex groups that  appear in the abelian decomposition associated 

with Comp(Rl im)e_l(z ,y ,a) ,  in accordance with their given order, to satisfy 

condition (xi). Clearly, if q t  r >_ 1, is a basis element of any of the abelian or 
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pegged abelian groups that appear in this abelian decomposition and sl < s2 are 

given integers, we can choose ,kn(qr t) = u rns2+sl where m is an integer, and u has 

no roots in Fk. 
Next, we define the homomorphism An iteratively on each of the QH 

subgroups QHi that appear in the abelian decomposition associated with 

Comp(Rlirn)e_l (z, y, a) in accordance with their given order. On each subgroup 

QHi we set the homomorphism An to be of the form 

~ -  ~ n  0 V n ,  

i is an automorphism of the subgroup QHi of the form where c~ n 

= p n  o o o - -  o 

and p~, is a (modular) automorphism of QHi chosen according to Lemma 1.19. 

We have chosen the homomorphism ~F: < ]1 . . . . .  fb >-+ Fk to guaran- 

tee that ~ o Cornp(~)e_l: QHi -+ Fk has a non-abelian image. Hence, by 

Lemma 1.19 and the same argument used to prove the existence of a quadratic 

i to be large enough; test sequence (Lemma 1.6), we choose the exponents e~ 

properties (vii)-(ix) and properties (xii) and (xiii) hold for the homomorphisms 

)~n: Comp(Rlirn)e_l (z, y, a) ~ Fk. By possibly further increasing the integer mn 
used to define the homomorphism ~F: < f l , - . . ,  fb > ~  Fk, and further increas- 

used to define the homomorphisms ~QH~, and the exponents ing the exponents e n 
used in setting the image of basis elements of the abelian vertex groups, we get 

property (xiv) to hold as well. 

So far we have defined the homomorphism An only on the ~ - l - th  completed 

limit group Comp(Rlim)e_l(z,y,a). Repeating the construction of the homo- 

morphism An for each of the abelian vertex groups and each of the QH vertex 

groups that appear in the abelian decompositions associated with each of the 

upper levels iteratively and according to the pre-fixed order, we obtain a homo- 

morphism An: Comp(Rlim)(z, y, a) ~ Fk that satisfies properties (i)-(xiv) of the 

lemma. I I  

Having constructed test sequences, we continue the proof of Theorem 1.18 

by essentially combining the arguments used to prove Theorems 1.1, 1.3 

and 1.8 and 1.9. Also, we may assume that our given completed limit group 

Comp(Rtim)(z, y, a) is not the free group < f ,  a >, since in that  case Theorem 

1.18 follows from Theorem 1.2. 

By the assumptions of Theorem 1.18, for every possible specialization of 

(y,a)  that factors through the restricted limit group Rlim(y,a), there exists 
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a specialization for the variables x, so that  the given equalities Wl(X, y, a) = 

1 . . . .  , ws(x, y, a) = 1 and inequalities vl(x,  y, a) ¢ 1 , . . . ,  v~(x, y, a) ¢ 1 are ful- 

filled. Given a well-structured resolution Res(y, a) of Rlim(y,  a), its completion 

Comp(Res)(z ,y ,a) ,  and a test sequence {(u~,r~,An)} associated with the 

completed resolution Comp(Res)(z,  y, a), for each index n, we can choose a spe- 

cialization x~ to be a shortest possible specialization (in the word metric on Fk) 

for which 

Wl(Xn, An(y), a) = 1 . . . . .  Ws(Xn, An(y), a) = 1A 

Avl(xn, An(y),a) ¢ 1 . . . .  ,Vr(X~,An(y),a) # 1. 

If the sequence of specializations {(xn, An(z),An(y),a)} corresponding to a 

test sequence and some shortest possible specializations {Xn} converges, we call 

the obtained limit group a test l imit group. On the set of test limit groups 

we define a natural  partial  order, by setting TLI(x ,  z, y, a) > TL2(x, z, y, a) if 

TL2(x, z, y, a) is a quotient of TLI(x ,  z, y, a). By the arguments used in con- 

structing the Makanin-Razborov diagram of a limit group (lemmas 5.4 and 5.5 

in [Se]), there exist maximal test limit groups and in fact there are finitely many 

equivalence classes of maximal test limit groups that  we denote 

M T L I  (X, z, y, a ) , . . . ,  MTLm(x ,  z, y, a). 

Since the maximal test limit groups MTLI(X,  z, y, a) . . . . .  MTLm(x ,  z, y, a) 

were constructed using sequences of specializations {(xn, An(z),A(y),a)} for 

which the equalities Wl(Xn, An(y), a) = 1 , . . . ,  ws(Xn, An(y), a) -- 1 are fulfilled, 

the words Wl(X, y, a) . . . .  , ws(x, y, a) represent the trivial words in the maximal 

test limit groups 

MTLI(X,  z, y, a ) , . . . ,  MTLrn(X, z, y, a). 

Similarly, the words vl (x, y, a) . . . . .  vr (x, y, a) represent non-trivial words in these 

maximal test limit groups. 

By repeating the iterative modifications of the specializations {x~}, applied in 

the proofs of Theorems 1.3 and 1.8, we may further replace the maximal test limit 

groups MTL1 (x, z, y, a), . . . , M T  Lm (x, z, y, a) by quotients of them (still denoted 

M T L j ( x ,  z, y, a)), so that  each of the maximal test limit groups M T L j  (x, z, y, a) 

admits a free decomposition 

M T L j ( x , z , y , a )  = G j ( g , z , y , a ) ,  < e l , . . . , ed j  > 
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where < el . . . . .  edj > is a (possibly trivial) free group on the set e l , . . .  ,ed3, 

Comp(Rlim) (z, y, a) < Gj (g, z, y, a), and Gj (9, z, y, a) admits no free decompo- 

sition in which Comp(Rlim)(z, y, a) is contained in one of the factors. 

At this point we continue with each of the maximal test limit groups 

M T L j  (x, z, y, a) in parallel, by combining the arguments used to prove Theorems 

1.3 and 1.8. Let MTL(x ,  z, y, a) be one of the maximal test limit groups. We fix 

a generating system of the factor Gig, z, y, a) of MTL(x ,  z, y, a), Gig, z, y, a) = 
< g l , . . . , g c  >. We continue with all the sequences {(x~,An(Z), A~(y),a)} for 

which the corresponding sequence {(An(z), a)} is a test sequence, and for every 

index n: 

(1) The specialization Xn is in the free group Fk * Fd, where 

MTL(x , y , z , a )  = G(g,z,y,a) • Fd. 

(2) The tuple (xn, An (z), An (y), a) factors through the maximal test limit group 

MTL(x ,  z, y, a). 

(3) vl(xn,An(y),a) 7 £ 1,. . . ,Vr(Xn,An(y),a ) 7 ~ 1. 
(4) The specializations gl(n), . . . ,gc(n) C Fk obtained from the specialization 

xn have the shortest length (in the simpticial metric on the Cayley graph 

of Fk) among all possible specializations x~ that satisfy properties (1) (3). 

We look at such a sequence that converges to a faithful action of MTL(x, z, y, a) 
on a real tree Y1- By the shortening argument used in the proofs of Theorems 

1.3 and 1.8, since the specializations gl ( n ) , . . . ,  ge(n) were chosen to be shortest 

possible, and since the factor G(g, z, y, a) admits no free decomposition in which 

the completion Comp(z, y, a) is elliptic, the factor G(g, z, y, a) does not fix a point 

in the real tree Yr. Furthermore, the action of MTL(x ,  z, y, a) on the real tree 

Y1 must be of one of the following types: 

(1) MTL(x , z , y , a )  (and G(g,z,y,a)) inherits from its action on the real 

tree Y1 a graph of groups with one QH subgroup Q < Comp(Rlim)(z, y, a), 
which is the highest order QH subgroup in the completed resolution 

CompiRes ) ( z, y, a), and several vertex groups Vj (v, a), corresponding to 

the various orbits of point stabilizers in the action of MTL(x ,  z, y, a) on 

Yl. The decomposition Comp(Rlim)(z, y, a) inherited from this decompo- 

sition of MTL(x ,  z, y, a) is exactly of the same form, and is compatible with 

the (top level of the) completed resolution Comp(Res)iz , y, a). 

(2) MTL(x ,  z, y, a) (and the factor G(g, z, y, a)) acts discretely on Y1, and it 

inherits a graph of groups with several vertex groups located on a loop 

with abelian stabilizer, where the Bass-Serre generator bs correspond- 
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ing to the loop can be chosen to commute with the (abelian) loop sta- 

bilizer. Hence, the maximal test limit group M T L  admits an amalga- 

mated product of the form M T L  = V *Abl Ab, where the subgroup Ab 
is abelian, and contains the (pegged) abelian subgroup of highest order in 

Comp(Res)(z,y,a). Furthermore, the (pegged) abelian group of highest 

order in Comp(Res)(z, y, a) is not elliptic in this amalgamated product. 

The decomposition Comp(Rlim)(z, y, a) inherited from this decomposition 

of M T L  is exactly of the same form, and is compatible with the (top level 

of the) completed resolution Comp(Res)(z, y, a). 

(3) The action of the maximal test limit group MTL(x ,  z, y, a) (and the fac- 

tor G(g, z, y, a)) on the real tree }~ corresponds to a unique axial compo- 

neat and several point stabilizers located on that axial component. In this 

case M T L  (and the factor G(g, z, y, a)) admits an amalgamated product of 

the form M T L  = V *Abl Ab, where the subgroup Ab is abelian, and con- 

tains the (pegged) abelian subgroup of highest order in Comp(Res)(z, y, a). 
Furthermore, the (pegged) abelian group of highest order in 

Comp(Res) (z, y, a) is not elliptic in this amalgamated product. The decom- 

position Comp(Rlim) (z, y, a) inherited from this decomposition of M T L  is 

exactly of the same form, and is compatible with the (top level of the) 

completed resolution Comp(Res)(z, y, a). 

If the action of the maximal test limit group MTL(x ,  z, y, a) satisfies the prop- 

erties of case (1), we continue the analysis of MTL(x ,  z, y, a) by analyzing each of 

the vertex groups Vj (v, a) in parallel. If the action of M T L  satisfies the proper- 

ties of cases (2) or (3), we contimm with the vertex group V, where M T L  inherits 

the amalgamated product M T L  = V *Ab~ Ab from its action on the real tree !/1- 

By iteratively repeating this "uncovering" process (as we did in the proof of The- 

orem 1.8), we are finally able to replace each of the maximal test limit groups, 

MTL(x ,  z, y, a), with finitely many quotients (still denoted MTLj(x ,  z, y, a)) of 

the form 

M T L j  (x, z, y, a) = Clj (s, z, y, a) * Ej (e t , . . . ,  edj) 

where Ej(e l , . . . , ed j )  is a free group, freely generated by < el . . . .  ,edj >, and 

Clj (s, z, y, a) is a closure of the resolution Res(y, a). 

The maximal test limit groups MTLj  (x, z. y, a) were obtained as the limit of 

sequences of the form {(Xn, An(Z), An(y), a)}, where for every index n the tuple 

(Xn,~n(Z),~n(y),a) factors through M T n j ( x , z , y , a )  and, in addition, 

vl(Xn,.~n(y),a) ~= 1,. . . ,vr(Xn,An(y),a) 7 ~ 1. Hence, there must exist a re- 
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traction 

~: M T L j ( x , z , y , a )  --+ ely(s,  z ,y ,a)  

so that the words ~(vl (x, y, a) ) , . . . ,  ~(vr(x, y, a)) are all non-trivial in the closure 

Clj (8, z, y, a). Therefore, each generator x of ~?(MTLj (x, z, y, a)) can be naturally 

presented as a word in the closure Cli(Res)(s, z,y, a), i.e., x = ~(x)(s, z, y, a), 
each of the words Wl(X(S, z, y, a), y, a ) , . . . ,  ws(x(s, z, y, a), y, a) represents the 

trivial word in the closure Cly(Res)(s, z ,y ,a) ,  and there exists some special- 

ization (s~, z~, y~, a) for which 

i ~i i i i i i i Vl(X(So, ~o, Yo, a), Yo, a) ¢ 1 , . . . ,  Vr(X(So, Zo, Yo, a), Y0, a) ~ 1. 

Since every test sequence associated with the completed resolution 

Comp(Res)(z,  y, a) can be adjoined by a sequence {xn} to form a sequence that  

factors through at least one of the maximal test limit groups M T L j  (x, z, y, a), the 

same argument used in proving Proposition 1.8 shows that the collection of clo- 

sures Cly(Res)(s,y,a)  associated with the maximal test limit groups 

M T L j ( x ,  z, y, a) has to be a covering closure. 

If the graded resolution Res(y,a) is not abelian, and the words 

Wl(X, y, a) . . . .  , ws (x, y, a) and Vl(X, y, a) . . . . .  v~ (x, y, a) are coefficient-free, then 

each of the maximal test limit groups constructed by our iterative procedure has 

the form 

M T L j ( x ,  z, y, a) = Fk * ely(s,  z, y) • E j ( e l , . . . ,  edi) 

where Fk is the coefficient group, and Ej ( e l , . . . ,  ed¢) is a (possibly trivial) free 

group. 

In this coefficient-free case, there must exist a retraction 

~: M T L j ( x , z , y , a )  --+ Cl j (s , z ,y)  

for which the elements y(Vl(X, y ) ) , . . . ,  ~(Vr(X, y)) are mapped to non-trivial ele- 

ments in ely(s,  z, y), so that the formal solutions can be taken to be coefficient- 

free, i.e., x = ~(x)(s, z, y). | 

For the purposes of our "trial and error" procedure for quantifier elimination, 

a slight generalization of Theorem 1.18 is required. The proof of the more general 

form that appears below is identical to the proof of Theorem 1.18. 

THEOREM 1.22: Let Fk = <  a~, . . . ,ak  > be a free group, and let 
ul(y, a), . . ., urn(y, a) be a collection of words in the alphabet {y, a} for which the 
group Rlim(y,  a) =< y, alul(y, a ) , . . . ,  urn(y, a) > is a restricted limit group. Let 
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Res(y ,  a) be a well-structured resolution of  the restricted limit group R l im(y ,  a), 

and let Comp(Res ) ( z ,  y, a) be the completion of  the resolution Res(y ,  a) with a 

corresponding completed limit group C o m p ( R l i m ) ( z ,  y, a). 

Let El (x ,  y, a) = 1 . . . . .  E~(x, y, a) = 1 be a collection of systems of equations 

over Fk, and let q21(x~ y, a) . . . .  , q2~(x, y, a) be a collection of  words in the alphabet 

{x,  y, a}. Suppose that  the sentence 

Vy (u l (y ,a )  = 1 . . . . .  Um(y,a) = 1) 3x 

(~i(x ,y ,a)  = 1 A ~ ( x ,  ~,a) ¢ 1) v . . .  v ( ~ ( x , y , a )  = I A ~ ( x , y , a )  ¢ 1) 

is a truth sentence. 

Then there exists a covering closure 

Ct(  Res ) l  ( s, z, y, a) l  . . . . .  Cl(  Res)q( S, z, y, a), 

and for each index i, 1 < i < q, there exists a formal solution xi(s ,  z, y, a) and an 

index j ( i ) ,  1 < j ( i )  <_ r, with the following properties: 

(i) For each index i, 1 < i <<_ q, all the words in the system 

Ej( i ) (x i (s ,  z, y, a), y, a) represent the trivial word in the restricted limit 

group corresponding to the i-th closure Cl(  R l im) i (  s, y, a ). 

(ii) For each index i, 1 < i < q, there exists a specialization (Sio, -0,'i Y0,i a) that 

factors through the i-th closure Cl(  Res  )i( s, z, y, a), so that  a11 the words in 

the collection ~j(~)(xi(s~o, zio, y~, a), y~, a) are not the trivial element in Fk. 

Furthermore, i f  the l imit group R l im(y ,  a) is not  abelian, and the words 

Wl (X, y, a), . . . , ws(x,  y, a), vl (x, y, a), . . . , vr(x,  y, a) are coet~cient-free, then the 

formal solutions x = xi(s ,  z, y, a) can be taken to be coet~cient-fi'ee, i.e., x = 

xi(s,- ,  y). 

2. F o r m a l  l i m i t  g r o u p s  

Theorems 1.18 and 1.22 show that  given a restricted limit group and a well- 

structured resolution of that  limit group, the validity of an AE sentence over the 

given limit group implies the existence of a finite collection of formal solutions 

defined over a covering closure of the resolution of that  limit group. The finite 

collection of formal solutions constructed in Theorems 1.18 and 1.22 are guar- 

anteed to satisfy the equalities specified in the sentence, and at the same time 

to admit some particular specialization for which all the inequalities specified in 

the sentence are valid. 

Our approach to quantifier elimination of predicates is based on the existence 

of formal solutions satisfying the properties listed in Theorems 1.18 and 1.22. 
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However, instead of distinguishing formal solutions which admit specializations 

that satisfy the inequalities specified in the sentence, our strategy is to analyze 

the entire family of formal solutions that satisfy only the equalities specified in 

the sentence, so that if the sentence is indeed a t ruth sentence, Theorems 1.18 

and 1.22 guarantee that the entire family contains a finite collection of formal 

solutions defined over a covering closure of the given (well-structured) resolution 

and admitting specializations that satisfy also the inequalities specified in the 

sentence. 

Given a restricted limit group Rlim(y, a) and a well-structured resolution 

Res(y, a) of it, to analyze the family of all formal solutions of a given system 

of equations E(x, y, a) = 1, defined over some closure of the completion of our 

given resolution, we need to present formal limit groups and their canonically 

associated formal Makanin-Razborov diagrams. 

We start by defining formal limit groups. 

Definition 2.1: Let Res(y,a) be a well-structured resolution of a restricted 

limit group Rlim(y,a), let Comp(Res)(z,y,a) be the completed resolution of 

Res(y, a), and let E(x, y, a) = 1 be a system of equations. 

Let the sequence of automorphisms {(~'~,T/)} of the QH subgroups QHi 
that appear in the abelian decompositions associated with the various levels in 

the completed resolution Comp(Res)(z, y, a), together with the homomorphisms 

{An: Comp(Rlim) --+ Fk}, be a test sequence associated with the completed 

resolution Comp(Res)(z, y, a). For each index n suppose that there exists some 

specialization xn for which E(xn, An(y), a) = 1. 

For each index n, the homomorphism An: Comp(Rlim)(z, y, a) --+ Fk together 

with the specialization xn defines a homomorphism from the free group with 

generating set < x, z, y, a >, denoted F(x, z,y, a), to the coefficient group Fk, 

an: F(x,z,y,a) --+ Fk. 
We say that  the test sequence {~/, T~, An } together with the sequence of special- 

izations {x~ } is a convergent formal sequence, if the sequence of corresponding ho- 

momorphisms {an: F(x, z, y, a) --+ Fk} is convergent (in the Gromov-Haussdorff 

topology, after appropriate rescaling). We call the obtained limit group, a formal 
limit group, and denote it FL(x, z, y, a). 

Note that by construction Comp(Rlim)(z, y, a) < FL(x, z, y, a). Since every 

abelian subgroup of a limit group is contained in a unique maximal abelian sub- 

group, every abelian subgroup of a limit group is contained in a unique maximal 

abelian subgroup of the same rank. By replacing the (pegged) abelian groups in 

Comp(Rlim)(z, y, a) by tile maximal abelian groups of the same rank containing 
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them in F L ( x , z , y , a ) ,  we obtain a (canonical) closure of Comp(R l im) ( z , y , a )  

in FL(x ,  z, y, a), which we call the formal closure of Comp(Rl im)(z ,  y, a) in the 

formal limit group F L ( x, z, y, a ). We denote the formal closure, F Cl ( s, z, y, a ) . 

To analyze formal limit groups we need to construct their associated (canoni- 

cal) formal Makanin-Razborov diagrams. To do that  we need to study the alge- 

braic structure of formal limit groups, FL(x ,  z, y, a), relative to their subgroup, 

the completed restricted limit group Comp(Rl im)(z ,  y, a). To do that  we start  

by defining the formal J S J  decomposition of a formal limit group. 

In the sequel below let Res(y,  a) be a well-structured resolution of a restricted 

limit group Rl im(y ,a) ,  and let Comp(R l im) ( z , y ,a )  be the limit group associ- 

ated with its completion. Let E(x, y, a) = 1 be a system of equations and let 

FL(x ,  z, y, a) be a formal limit group corresponding to the system E(x, y, a) = 1. 

Let FCl(s ,  z, y, a) be the formal closure of Comp(Rl im)(z ,  y, a) in the formal 

limit group FL(x ,  z, y, a). 

Definition 2.2: Suppose that  the formal limit group FL(x ,  z, y, a) does not split 

as a non-trivial free product in which Comp(Rl im)(z ,  y, a) is contained in one of 

the factors. An essential one edge abelian splitting, FL(x ,  z, y, a) -= D *A E or 

FL(x ,  z, y, a) = D.A ,  in which Comp(Rl im)(z ,  y,a) is elliptic, is called a formal 
abelian splitting. 

The arguments used in section 2 of [Se] naturally generalize to construct the 

formal JSJ  decomposition of a formal limit group. 

THEOREM 2.3 (cf. ([Se], 9.2)): Let FL(x ,  z, y, a) be a formal limit group which 

does not split as a non-trivial free product in which the completed limit group 

C omp( Rl im) ( z, y, a) is contained in one of  the factors. 

There exists an essential (perhaps trivial) abelian splitting of  FL(x ,  z, y, a), 

which we call the formal J S J decomposition of F L( x, z, y, a ) , with the following 
properties: 

(i) Comp(R l im) ( z , y , a )  is elliptic in the formal JSJ decomposition. I f  the 

formal JSJ decomposition of F L( x, z, y, a) is not trivial, then any one edge 

abelian splitting obtained by collapsing all edges but one in the formal JSJ 

decomposition is a formal splitting of FL(x ,  z, y, a). 

(ii) Every (formal) canonical maximal QH subgroup ( CM Q) of F L ( x, z, y, a) is 

conjugate to a vertex group in the formal JSJ decomposition. Every formal 

QH subgroup of FL(x ,  z, y, a) can be conjugated into one of the formal 

CMQ subgroups of F L ( x , z , y , a ) .  Every vertex group in the formal JSJ 
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decomposition which is not a CMQ subgroup of F L( x, z, y, a) is elliptic in 

any formal splitting of F L(x, z, y, a). 

(iii) A one edge formal splitting FL(x,  z, y, a) = D*A E or FL(x,  z, y, a) = D*A 

which is hyperbolic in another such elementary formal splitting is obtained 

from the formal JSJ decomposition of FL(x,  z, y, a) by cutting a surface 

corresponding to a formal CMQ subgroup of FL(x,  z, y, a) along an essential 

S.C.C. 

(iv) Let 0 be a one edge formal abelian splitting FL(x,  z, y, a) = D *A E or 

FL(x,  z, y, a) = D*A which is elliptic with respect to any other such one 

edge formal splitting of FL(x,  z, y, a). Then 0 is obtained from the formal 

JSJ  decomposition of F L(x, z, y, a) by a sequence of collapsings, conjuga- 

tions, and modifying boundary monomorphisms by conjugations. 

(v) Let A be a general formal abelian splitting of FL(x,  z, y, a). There ex- 

ists a formal splitting A1 obtained from the formal JSJ  decomposition by 

splitting the formal CMQ subgroups along weakly essential s.c.c, on their 
corresponding surfaces, so that there exists a F L ( x, z, y, a )-equi variant sim- 

plicial map between a subdivision of the Bass-Serre tree TA1 to TA. 

(vi) If  JSJ1 is another formal JSJ decomposition of FL(x ,  z, y, a), then JSJI  

is obtained from the formal JSJ decomposition by a sequence of slidings, 

conjugations, and modifying boundary monomorphisms by conjugations 

(see section 1 of [Ri-Se2] for these ,lotions) 

(vii) I f  FL(x,  z ,y ,a)  admits a formal abelian splitting, then the formal 3SJ 

decomposition of F L( x, z, y, a) is non-trivial. 

In case the formal JSJ decomposition is non-trivial, it allows one to "further 

simplify" formal limit groups. In order to construct formal MakaninRazborov 

diagrams we still need to study the structure of formal limit groups with trivial 

formal 3SJ decomposition. 

PROPOSITION 2.4: Let FL(x , z , y ,a )  be a formal limit group which does 

not split as a non-trivial free product in which the completed limit group 

Comp(Rlim)(z ,y ,a)  is contained in one of the factors. If  the formal JSJ  

decomposition of F L( x, z, y, a) is trivial, then F L( x, z, y, a) is a formal closure of 

Comp(Rlim)(z, y, a) < FL(x,  z, y, a), i.e., FL(x,  z, y, a) = FCl(s, z, y, a). 

Proof: Suppose that  FL(x,  z, y, a) does not split as a non-trivial free product 

in which Comp(Rlim)(z, y, a) is contained in one of the factors, and the formal 

JSJ  decomposition of FL(x,  z, y, a) is trivial. 
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The formal limit group FL(x , z , y ,a )  was constructed from a sequence of 

homomorphisms an: F(x, z, y, a) -+ Fk that  are composed from a test sequence 

{ ~ ,  T/, An} and specializations {Xn}, for which E(xn, An(y), a) = 1. From the 

o~ (non-trivial) convergence of the sequence of homomorphisms {c~n}n=l, we get a 

stable action of the formal limit group FL(z,  z ,y,a) on some real tree t~, in 

which the stabilizer of every non-degenerate segment is either trivial or abelian. 

By the classification of stable actions of groups on real trees (see theorem 1.5 in 

[Se]), there is a graph of groups A1 with abelian edge stabilizers and fundamental 

group FL(x,  z, y, a), corresponding to the action of FL(x, z, y, a) on the real tree 

Y1. If  the completed limit group Comp(Rlim)(z, y, a) is contained in a vertex 

group of A1, or more generally, if Comp(Rlim)(z, y, a) is contained in a funda- 

mental group of a proper subgraph of A1, the formal limit group FL(x,  z, y, a) 
admits a formal abelian or a free decomposition in which the completed limit 

group Comp(Res)(z, y, a) is elliptic, a contradiction to our assumptions. 

Hence, by the properties of a test sequence, if Comp(Res)(z, y, a) is equal to 

its terminal free group F = <  a, f >, then necessarily FL(x, z, y, a) -- F, and 

the theorem follows. Otherwise, note that  by the properties of test sequences, 

the action of Comp(Res)(z, y, a) on the real tree Yi either contains a unique IET 

orbit and finitely many orbits of point stabilizers, or the action is discrete with a 

unique orbit of non-abelian point stabilizer and a unique edge stabilized by some 

abelian subgroup of Comp(Res)(z, y, a). Since FL(z,  z, y, a) inherits from its 

action on }'~ a graph of groups of the same form as the one Cornp(Res) (z, y, a) 
inherits from its action on Y1, the action of FL(x, z, y, a) on Y1 must contain 

also either a unique orbit of an IET component and finitely many orbits of point 

stabilizers, or its action is discrete with one orbit of non-abelian point stabilizers 

and one orbit of edges stabilized by some abelian subgroup of FL(z ,  z, y, a). 

In both types of the dynamics of the action of the formal limit group 

FL(x,  z, y, a) on the limit tree Yi, the generators x of the formal limit group 

FL(x,  z, y, a) can be written as words in elements from the vertex stabilizers V~ 

and elements from the formal closure FCl(s, z, y, a). Now, if we restrict the spe- 

cializations of the subgroup < x, z, y, a > to each of the vertex groups V/ in  the 

graph of groups associated with the action of FL(x,  z, y, a) on the real tree Y1, 

with each vertex group 17i we associate an action of V~ on some real tree V~. Re- 

peating this argument for the action of the vertex stabilizers V/on a real tree Y~, 

if V/is not the free group F = <  f ,  a >, the action of V~ on Y~ must be one of two 

types. Either it contains a unique orbit of an IET  component and finitely many 

orbits of point stabilizers, or the action is discrete with one orbit of non-abelian 
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point stabilizers and one orbit of edges stabilized by some abelian subgroup of 

the closure FCl(s, z, y, a). Hence, the generators x of the formal limit group 

FL(x, z, y, a) can be written as words in elements from the vertex stabilizers Wi 

and elements from the formal closure FCl(s, z, y, a). A finite induction argument 

clearly finishes the proof of the proposition. | 

Defining formal limit groups and their formal JSJ decompositions, and showing 

that a (relatively) freely indecomposable formal limit group with trivial formal 

JSJ decomposition is a formal closure FCl(s, z, y, a) of the completed limit group 

Comp(Rlim)(z, y, a), we are able to present formal Makanin-Razborov diagrams. 
Let Res(y,a) be a well-structured resolution of a restricted limit group 

Rlim(y, a), let Comp(Res)(z, y, a) be the completed resolution of Res(y, a), and 

let E(x, y, a) = 1 be a system of equations. 

Recall that  a formal limit group FL(x, z, y, a) of the system E(x, y, a) = 1 with 

respect to the resolution Res(y, a) was constructed from a convergent sequence 

of homomorphisms {(~n: Fix, z, y, a) --+ Fk} composed from a test sequence 

{v~, T~,, An}, and a sequence of specializations {xn} for which E(Xn, An(y), a) = 1. 

On the set of formal limit groups we can naturally define a partial order, by 

setting FL1 (x, z, y, a) >_ FL2(x,  z, y, a) if there exists an epimorphism 

~: FLl(x ,z ,y ,a)  ~ FL2(x,z,y,a). 

By the arguments used in the construction of the Makanin-Razborov diagram 

of a limit group (see lemmas 5.4 and 5.5 in [Se]), given the system of equa- 

tions E ( x , y , a )  = 1, and the (well-structured) resolution Res(y,a), there ex- 

ist maximal formal limit groups (with respect to the natural partial order), 

and up to the natural equivalence relation on formal limit groups there are 

only finitely many equivalence classes of formal limit groups which we denote 

MFLI(x,  z, y, a) . . . .  , MFLt(x, z, y, a). 
To construct the formal Makanin Razborov diagrams of the system E(x, y, a) = 

1 with respect to the restricted well-structured resolution Res(y, a), we proceed 

as in the construction of the graded Makanin-Razborov diagrams (section 10 in 

[Se]). We first decompose each of the maximal formal limit groups into the 

maximal (Grushko's) free decomposition in which the completed limit group 

Comp(Rlim)(z,y, a) is contained in a factor. We associate the formal JSJ de- 

composition with the factor containing Comp(Rlim) (z, y, a), and the (standard) 

abelian JSJ decomposition with each of the other factors. These associated JSJ 

decompositions naturally define the formal modular groups of each of the max- 

imal formal limit groups MFL~(x, z, y, a). Having these modular groups, and 
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assuming they are not trivial, we are able to define formal shortening quotients 

of each of the maximal formal limit groups. By the argument used to prove claim 

5.3 in [Se], every formal shortening quotient of a formal limit group is a proper 

quotient of it. 

Now, by the arguments used to prove lemmas 5.4 and 5.5 in [Se], there 

are maximal formal shortening quotients, and up to the natural equivalence 

classes of formal limit groups there are only finitely many equivalence classes 

of maximal shortening quotients of each of the maximal formal limit groups 

MFLI (X ,  z, y, a) . . . . .  M F L t ( x ,  z, y, a). 

Since a formal limit group is in particular a limit group, any properly decreas- 

ing sequence of formal limit groups terminates. Therefore, if we continue the 

above construction of maximal formal free decompositions, formal JSJ decompo- 

sitions and formal modular groups for each of the factors, and then collect the 

(canonical) family of maximal  formal shortening quotients, we are guaranteed 

that  this iterative construction terminates. We call the obtained diagram the 

formal Makanin-Razborov diagram of the system of equations E(x, y, a) = 1 with 

respect to the (well-structured) resolution Res(y, a). We call each pa th  in this 

(directed) diagram a formal resolution and denote it FRes(x ,  z, y, a). Note that  

by Proposition 2.4, every formal resolution terminates with a formal limit group 

of the form FCl(s ,  z, y, a) * F, where FCl(s ,  z, y, a) is a closure of the resolution 

Res(y,  a) and/~  is some (possibly trivial) free group. In particular, every formal 

resolution in the formal Makanin-Razborov diagram is defined over some closure 

of the completed limit group Comp(Rl im)(z ,  y, a). 

Theorems 1.18 and 1.22 prove that  if an A E  sentence defined over some limit 

group is a t ruth sentence, then there exist formal solutions that  may serve as 

"witnesses" for the correctness of the sentence in a "generic" point of the variety 

associated with the given limit group. Along our "trial and error" procedure 

for quantifier elimination we are not going to look for specific formal solutions 

that  satisfy the conclusions of Theorems 1.18 and 1.22, but rather study the 

entire collection of formal solutions by studying the maximal formal limit groups 

associated with systems of equations with respect to some given resolutions, and 

then use the conclusions of Theorems 1.18 and 1.22 which guarantee that  these 

entire collections of formal solutions contain formal solutions with the properties 

listed in these theorems. Since this point of view is used extensively in our 

quantifier elimination procedure, we prefer to state it specifically as a corollary. 

COROLLARY 2.5: Let Fk = <  a l , . . . , a k  > be a free group, and let 

ul (y, a) . . . . .  urn(y, a) be a collection of words in the alphabet { y, a }, for which the 
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group Rlim(y,  a) --< y, a]ul(y, a) . . . .  , urn(y, a) > is a restricted limit group. Let  

Res(y, a) be a well-structured resolution of the restricted limit group Rlim(y,  a), 

and let Comp(Res)(z,  y, a) be the completion of the resolution Res(y, a) with a 

corresponding completed limit group Comp( Rl im ) ( z, y, a ). 

Let E(x ,y ,a )  = 1 be a system of equations over Fk, and let 

vl(x,  y, a ) , . . . ,  vr(x, y, a) be a collection of words in the alphabet {x, y, a}. Sup- 

pose that the sentence 

Vy ( u l ( y , a )  = 1 . . . .  , u . ~ ( y , a ) -  1) ~x 

E(x ,y ,a)  = 1 A v l (x ,y ,a )  ¢ 1 , . . . , v r ( x , y , a )  ¢ 1 

is a truth sentence. 

Then there exists a covering closure 

Cl( Res)l  ( s, z, y, a), . . . , Cl( Res)q( s, z, y, a), 

and formal resolutions FRes l (x ,  z, y, a) . . . .  , FResq(X, z, y, a) in the formal 

Makanin-Razborov diagram associated with the system of equations E(x,  y, a) = 

1 and the well-structured resolution Res(y, a), with the following properties: 

(i) For each index i, 1 <<_ i <<_ q, the formal resolution FResi(s,  z, y, a) ter- 

minates with a formal limit group of the form Cli(s, z, y, a) * Fi for some 

(possibly trivial) free group F~. 

(ii) For each index i, 1 <_ i <_ .q, there exists a formal solution xi(s, z, y, a) 

that factors through the resolution FResi(x ,  z, y, a), and a specialization 
i i i (So, Yo, f~), a) that factors through the i-th closure Cl(Res)i(s,  z, y, a), so 

that for every index j 

f~,a),yo, a ) ~ 1. vj 

In particular, in case the above sentence is a truth sentence, the set of clo- 

sures that appear in the terminal points of the formal resolutions in the formal 

Makanin-Razborov diagrams of the system E(x,  y, a) = 1 and the resolution 

Res(y, a) contains a covering closure of the restricted resolution Res(y, a). 

In a similar way, we get the following corollary f rom Theorem 1.22. 

COROLLARY 2.6: Let Fk = <  al  . . . .  ,ak > be a free group, and let 

u l  ( y ,  a ) ,  . . . , U r n ( y ,  a )  be a collection of words in the alphabet (y, a}, for which the 

group Rlim(y,  a) =< y, alul(y, a ) , . . . ,  urn(y, a) > is a restricted limit group. Let 

Res(y, a) be a well-structured resolution of the restricted limit group Rlim(y,  a), 
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and let Comp( Res) ( z, y, a) be the completion of the resolution Res(y, a), with a 

corresponding completed limit group Comp( Rl im)  (z, y, a). 

Let E1 (x, y, a) -- 1 . . . .  , E r (x ,  y, a) = 1 be a collection of systems of equations 

over Fk, and let ~l(X,  y, a ) , . . . ,  ~r(x,  y, a) be a set of collections of words in ttle 

alphabet {x, y, a}. Suppose that the sentence: 

Vy (ul(y ,a)  -- 1 . . . . .  Um(y,a) -- 1) 3x (E l ( x , y ,a )  ---- 1A q~l(x,y,a) • 1) V . . .  

V ' "  V (E r ( x , y ,a )  = l A ~ r (X , y ,a )  # l )  

is a truth sentence. 

Then there exists a covering closure 

Cl( ReS)l ( S, z, y, a)l, . . . , Cl ( ReS)q( S, z, y, a), 

and formal resolutions FRes l ( x ,  z, y, a) . . . . .  FResq(x,  z, y, a), where for each 

index i, 1 < i < q, there exists some index j( i) ,  1 < j( i)  <_ r, for which 

FRes i (x ,  z, y, a) is a formal resolution in the formal Makanin-Razborov diagram 

of the system of equations Ej( i ) (x ,y ,a)  = 1 and the well-structured resolution 

Res(y, a), with the following properties: 

(i) For each index i, 1 < i < q, the formal resolution F R e s i ( s , z , y , a )  ter- 

minates with a formal limit group of the form Cli(s, z, y, a) * Fi for some 

(possibly trivial) free group Fi. 

(ii) For each index i, 1 < i < q, there exists a formal solution x i (s, z, y, a) 

that factors through the formal resolution FResh(x, z, y, a), so that there 

exists a specialization (sio, y~, fg, a) that factors through the i-th closure 

Cl(Res)i(s ,  z, y, a) so that all the words in the collection 

y0, a), y0, a) f f W j ( i ) ( X i ( 8 ~ O ,  i i , i i 

are not the trivial element in Fk. 

In particular, in case the above sentence is a truth sentence, the set of closures 

that appear as the terminal points of the formal resolutions in the collection of 

formal Makanin Razborov diagrams of the systems Ej (x, y, a) = 1 and the reso- 

lution Res(y, a) contains a covering closure of the restricted resolution Res(y, a). 

3. G r a d e d  f o r m a l  l imi t  g r o u p s  

Theorems  1.18 and 1.22 show tha t  given a restr icted limit group and a well- 

s t ruc tured  resolution of tha t  l imit  group, the validity of an A E  sentence defined 

over the given restr ic ted limit group implies the existence of a finite collection 
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of formal solutions defined over a covering closure of the given well-structured 

resolution of that limit group. 

In the previous section we studied the entire family of formal solutions of 

a system of equations E(x, y, a) = 1 with respect to a given well-structured 

resolution Res(y, a). For the purpose of our quantifier elimination procedure, an 

understanding of the structure of such families of formal solutions is not sufficient. 

Our quantifier elimination procedure requires a careful analysis of parametric 

families of formal solutions, i.e., given a graded limit group Glim(y, p, a), a (well- 

structured) graded resolution of it, GRes(y,p,a), and a parametric system of 

equations E(x, y,p, a) = 1, we need to study how the family of formal solutions 

of the system E(x, y,p, a) and the graded resolution GRes(y,p, a) varies with a 

change of the defining parameters p. To analyze the variation of the set of formal 

solutions, we combine the techniques used in the previous section with those used 

in the construction of the graded Makanin-Razborov diagram of a graded limit 

group presented in sections 9 and 10 in [Se]. 

Let Glim(y,p,a) be a graded limit group, and let GRes(y,p,a) be a well- 

structured graded resolution of it. The graded resolution GRes(y,p, a) terminates 

in either a rigid graded limit group, Rgd(y,p, a), or a solid graded limit group, 

Sld(y,p, a). By section 10 in [Se], for any given specialization P0 of the defining 

parameters p, the graded resolution GRes(y,p, a) "covers" at most finitely many 

ungraded resolutions of the form Res(y, po, a), where each of the resolutions 

Res(y,p,a) terminates in either a rigid specialization of Rgd(y,p,a), in case 

the graded resolution GRes(y,p,a) terminates in the rigid graded limit group 

Rgd(y,p, a), or a solid family of specializations of Sld(y,p, a), in case the graded 

resolution GRes(y,p~ a) terminates in the solid graded limit group Sld(y,p, a). 
Since the graded resolution GRes(y,p, a) is well-structured, so are all the non- 

degenerate ungraded resolutions Res(y,po, a) covered by it. 

In analyzing the entire collection of formal solutions of the system E(x, Y,Po, a) 
= 1 and an ungraded resolution of the form Res(y,po, a), which is "covered" by 

the graded resolution GRes(y, p, a), we will assume that the ungraded resolution 

Res(y,po, a) is non-degenerate. According to section 11 of [Se], there are finitely 

many ways for the "covered" ungraded resolution Res(y, Po, a) to be degenerate, 

and the collection of all formal solutions defined over ungraded resolutions that  

are degenerated in a particular way (one of the finitely many possibilities) can 

be analyzed using precisely the same procedure used to analyze the collection of 

formal solutions defined over non-degenerate ungraded resolutions. 

In Section 1 of this paper we defined the completion of a well-structured 
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ungraded resolution. Hence, with each of the (non-degenerate, well-structured) 

ungraded resolutions Res(y, po, a) that  is covered by the graded resolution 

aRes(y,p, a), w e  can associate its completion Comp(Res)(z, Y,Po, a). Since all 

the (non-degenerate) ungraded resolutions Res(y, Po, a) are covered by the graded 

resolution GRes(y,p, a), they all terminate in the same free group which we de- 

note by < a, f >, and the variables z added at the various levels in each of 

the completions Comp(Res)(z, y, Po, a), associated with the ungraded resolutions 

Res(y, Po, a), are added in a compatible way in accordance with the structure of 

the graded resolution GRes(y, p, a). Also, the decompositions associated with the 

different levels of the completed resolutions Comp(Res)(y, Po, a) are compatible, 

which implies the compatibili ty of the QH subgroups appearing in the different 

levels, as well as the abelian vertex and edge groups that  appear  in the various 

levels of those completions. 

As in the ungraded setup, given a graded limit group, Glim(y,p, a), and a 

graded well-structured resolution of it, GRes(y, p, a), to analyze the family of all 

formal solutions of a given system of parametric equations E(x, y, p, a) = 1 and a 

(non-degenerate) ungraded resolutions Res(y, po, a) that  is covered by the given 

graded resolution GRes(y,p, a), we need to present graded formal limit groups 
and their canonically associated graded formal Makanin Razborov diagrams. As 

we did in the first two sections of this paper, to construct graded formal limit 

groups we start  by defining graded test sequences associated with the graded 

resolution GRes(y, p, a). 
The structure of all the non-degenerate ungraded resolutions GRes(y,po, a) 

covered by the graded resolution GRes(y,p, a) is compatible. Hence, as we did 

in the ungraded case, to define graded test sequences we fix a (bot tom to top) 

order of the QH and abelian vertex groups that  appear in the completion of the 

non-degenerate ungraded resolutions G Res( y, Po, a) covered by G Res( y, p, a ). We 

also fix an (ordered) bases for the abelian and pegged abelian groups that  appear 

in such (non-degenerate) completed resolutions Comp(GRes)(z, y, a). 

Definition 3.1: Let Glim(y,p, a) be a graded limit group, and let GRes(y,p, a) 
be a well-structured graded resolution of Glim(y, p, a) that  terminates in either a 

rigid graded limit group Rgd(y, p, a) or a solid graded limit group Sial(y, p, a). Let 

X be the Cayley graph of Fk = <  al  . . . .  , ak > and let Y be the Cayley graph of 

Comp(Glim) (z, y, p, a). Let dx and dy be the corresponding (simplicial) metrics. 

Let {(yn,pn,a)} be a sequence of either rigid or solid specializations of the 

terminal rigid or solid graded limit groups of the graded resolution GRes(y, p, a), 
Rgd(y,p,a) or Sld(y,p,a) in correspondence, and let {GRes(y, pn, a)} be the 
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ungraded resolutions covered by GRes(y, p, a) corresponding to these specializa- 

tions. We say that the sequence {(Yn,Pn, a)}, together with a sequence of au- 

tomorphisms {(v~, r~)} of the QH subgroups that appear in the graded abelian 

decompositions associated with the various levels in the completed resolutions 

C omp( G Res ) ( z, y, pn , a ) , and a sequence of homomorphisms 

{An: Comp(Glim)(z, y, pn, a) ~ Fk}, 

is a graded test sequence if the following conditions hold. 

For every index n: 

(i) The ungraded resolutions GRes(y,pn, a) are non-degenerate. 

(ii) Conditions (i)-(xiv) of Definition 1.20 (defining an ungraded test sequence) 

hold for the completed ungraded resolution Comp(GRes)(z, Y,Pn, a), the 

automorphisms {(v~, T~)} and the homomorphism 

An: Comp(GRes)(z, y,pn, a) --+ Fk. 

(iii) I fg  E Comp(Glim)(z, y,p, a), dy(g, id.) < n, and g is not elliptic in at least 

one of the abelian decompositions associated with the various levels of the 

(ungraded) completed resolution Comp(Res) (z, y, pn, a), then 

n.  maxdx(Pn, id.) < dx(An(g), id.). 

LEMMA 3.2: Let GRes(y,p,a) be a well-structured graded resolution of the 

graded limit group Glim(y, p, a). Let {(Yn, Pn, a)} be a sequence of either rigid 

or solid specializations of the terminal rigid or solid limit group, Rgd(y, p, a) 

or Sld(y, p, a), for which the corresponding ungraded resolutions GRes(y, Pn, a) 

covered by the graded resolution GRes(y,p,a) are non-degenerate. Then there 

exists a sequence of automorphisms { (~ ,  T~)} of the QH subgroups that appear 

in the abelian decompositions associated with the various levels of the completed 

resolutions { Comp( G Res) ( z, y, Pn, a)} and homomorphisms 

{An: Comp(Glim)(z,y,p~,a) --+ Fk), 

so that these sequences together with the given sequence of specializations 

{(yn,pn,a)} is a graded test sequence. Furthermore, given any two integers 

sl < s2 we can choose the n-th specialization of a basis element q~ of some of 

the (pegged) abelian groups that appear in an abelian decomposition associated 

with some level of the completed resolution Comp(GRes)(y, pn, a) to be of the 
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form .~n(q~) = h~n ns2+sl for some integer m, and so that the element hn has no 

non-trivial roots in Fk. 

Proof: Since for every index n, the ungraded resolution GRes(y,pn, a) is as- 

sumed to be non-degenerate, the proof of the lemma is identical to the proof of 

Lemma 1.21. | 

Constructing graded test sequences, we are finally able to start  analyzing the 

family of formal solutions of a given system of equations with respect to a given 

(well-structured) graded resolution. We start  this analysis by defining graded 

formal limit groups. 

Definition 3.3: Let E(x,y,p,a) = 1 be a system of equations, and let 

GRes(y,p,a) be a well-structured graded resolution of a graded limit group 

Glim(y,p, a). Let {(yn,Pn,a)} be a sequence of either rigid or solid specializa- 

tions of the terminal rigid or solid limit group of the graded resolution 

GRes(y,p, a), Rgd(y, p, a) or Sld(y, p, a) in correspondence. Let the sequence of 

specializations {(yn,Pn,a)} together with a sequence of automorphisms 

{ ( ~ ,  r~)} of the QH subgroups QHi that  appear  in the abelian decompositions 

associated with the various levels of the completed resolutions 

{Comp(GRes)(z, y, Pn, a)}, and the sequence of homomorphisms 

{.~n: Co,rtp(aI~es)(z, Y,Pn, a) ~ Fk} 

be a graded test sequence. Suppose that  for every index n there exists some spe- 

cialization xn for which E(x~, in(y) ,  p~, a) = 1. For each index n, the homomor- 

phism An: Comp(GRes)(z, y, Pr~, a) --+ Fk together with the specialization xn de- 

fine a homomorphism from the free group F (x, z, y, p, a) to Fk,/3~: F(x, z, y, p, a) 
--+Fk. 

We say that  the given test sequence together with the sequence of specializa- 

tions {x~} is a convergent graded formal sequence, if the corresponding sequence 

of homomorphisms {/3~: F(x, z, y,p, a) ~ Fk} is convergent (in the Gromov 

Haussdorff topology, after appropriate rescaling). We call the obtained limit 

group a graded formal limit group, and denote it GFL(x, z, y, p, a). 

As in analyzing (ungraded) formal limit groups, with a graded formal limit 

group we can naturally associate a graded forvnal closure. 

Definition 3.4: Let GFL(x, z, y, p, a) be a graded formal limit group, and let 

C(z,y,p,a) = <  z,y,p,a > <  GFL(x,z ,y ,p ,a) .  
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Since every abelian subgroup of a limit group is contained in a unique maximal  

abelian subgroup, every abelian subgroup of a limit group is contained in a unique 

maximal abelian subgroup of the same rank. By replacing the (pegged) abelian 

groups that  appear in the abelian decompositions associated with the various 

levels in the graded completion, C(z, y, p, a), by the maximal abelian groups of 

the same rank containing them in GFL(x , z ,y ,p ,a ) ,  we obtain a (canonical) 

subgroup (graded closure) in GFL(x,  z, y,p, a), which we call the graded formal 

closure of C(z,y ,p,a)  in the graded formal limit group GFL(x,  z,y,p, a). We 

denote the graded formal closure GFCI(s, z, y,p, a). 

To analyze graded formal limit groups we need to construct their associated 

(canonical) graded formal Makanin-Razborov diagrams. To do that  we need to 

study the algebraic structure of graded formal limit groups GFL(x,  z ,y ,p,a)  

relative to the subgroup < z, y,p, a >. To do that  we start  by defining the graded 

formal J S J  decomposition of a graded formal limit group. 

In the sequel below let GRes(y,p,a) be a well-structured graded Makanin 

Razborov resolution of a graded limit group Glim(y, p, a), and let E(x, y, p, a) = 1 

be a system of equations. Let GFL(x,  z, y,p, a) be a graded formal limit group 

with respect to the system of equations E(x,y,p,a)  = 1 relative to the well- 

structured graded resolution GRes(y,p, a). We further use the notation 

C(z,y,p,a) = <  z ,y ,p ,a  > <  GFL(x , z ,y ,p ,a ) ,  

A P  =< a,p > <  GFL(x,  z, y,p, a). 

Definition 3.5: Suppose the graded formal limit group GFL(x , z , y ,p ,a )  does 

not split into a non-trivial free product in which C(z, y,p, a) is contained in one 

of the factors. A one edge essential abelian splitting, G F L( x, z, y, p, a) = D * A E 

or GFL(x , z , y ,p ,a )  = D.A, in which C(z,y ,p,a)  is elliptic, is called a graded 

formal abelian splitting. 

The arguments used in section 2 of [Se] to construct the abelian JSJ decom- 

position of a limit group naturally generalize to construct the graded formal JSJ  

decomposition of a graded formal limit group. 

THEOREM 3.6 (cf. ([Se], 9.2)): Let GFL(x , z , y ,p ,a )  be a graded formal limit 

group which does not split to a non-trivial free product in which the subgroup 

C(z, y, p, a) is contained in one of the factors. 

There exists an essential (perhaps trivial) abelian splitting of G F L (x, z, y, p, a), 

which we call the graded formal J S J decomposition of G F L( x, z, y, p, a ), with the 

following properties: 
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(i) C(z, y, p, a) is elliptic in the graded formal JSJ decomposition. If  the graded 

formal JSJ decomposition of GFL(x,  z, y,p, a) is non-trivial, then any one 

edge abelian splitting obtained by collapsing all edges but one in the graded 
formal JSJ decomposition is a graded formal splitting of GEL(x,  z, y~ p~ a). 

(ii) Every graded (formal) canonical maximal QH subgroup (CMQ) of 

GEL(x,  z, y,p, a) is conjugate to a vertex group in the graded formal JSJ 

decomposition. Every graded formal Q H subgroup of GEL(x, z, y, p, a) can 

be conjugated into one of the graded formal CMQ subgroups of 

GEL(x,  z ,y ,p,a).  Every vertex group in the graded formal JSJ decom- 

position which is not a CMQ subgroup of GEL(x, z, y,p,a) is elliptic in 

any graded formal splitting of GEL(x, z, y, p, a). 

(iii) A one edge graded formal splitting 

GFL(x , z , y ,p ,a )  = D *A E Or GFL(x , z , y ,p ,a )  = D.A, 

which is hyperbolic in another such elementary graded formal splitting, is 

obtained from the graded formM JSJ decomposition of GFL(x,  z ,y ,p,a)  

by cutting a surface corresponding to a graded (formal) CMQ subgroup of 
GEL(x,  z, y, p, a) along an essential s.c.c.. 

(iv) Let 0 be a one edge graded formal splitting GEL(x,  z, y, p, a) = D *A E 

or GFL(x , z , y ,p ,a )  --- D,A, which is elliptic with respect to any other 

such one edge graded formal splitting of GEL(x,  z, y,p, a). Then 0 is ob- 

tained from the graded formal JSJ decomposition of GEL(x,  z, y, p, a) by a 

sequence of collapsings, conjugations, and modifying boundary monomor- 
phisms by conjugations. 

(v) Let A be a general graded formal abelian splitting of GEL(x,  z, y,p, a). 

There exists a graded formal splitting A1 obtained from the graded for- 

mal JSJ decomposition by splitting the graded (formal) CMQ subgroups 

along essential s.c.c, on their corresponding surfaces, so that there exists a 

GEL(x,  z, y, p, a)-equivariant simplicial map between a subdivision of the 

Bass Serre tree TA1 to TA. 

(vi) If JSJ1 is another graded formal JSJ decomposition of GFL(x,  z, y, p, a), 

then JSJ1 is obtained from the graded formal JSJ decomposition by a se- 

quence of slidings, conjugations, and modifying boundary monomorphisms 

by conjugations (see section 1 of [Ri-Se2] for these notions). 

(vii) If GEL(x,  z, y, p, a) admits a formal abelian splitting, then the graded for- 

real JSJ decomposition of GEL(x, z, y, p, f ,  a) is non-trivial. 

As in analyzing graded limit groups, the graded formal JSJ decomposition 
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allows one to "further simplify" graded formal limit groups in case it is not trivial. 

In order to construct graded formal Makanin-Razborov diagrams we still need to 

study the structure of rigid graded formal limit groups (i.e., graded formal limit 

groups with trivial graded formal JSJ  decomposition), as well as solid graded 

formal limit groups. 

In both cases we divide our study into two parts. First we assume that  the 

graded resolution we have started with, GRes(y,  a), terminates in a rigid limit 

group, and then we analyze the case in which the graded resolution GRes(y,  a) 

terminates in a solid limit group. 

THEOREM 3.7: Let GFL(x ,  z, y,p, a) be a graded formal limit group that does 

not split as a non-trivial free product in which the subgroup C(z,  y,p, a) is con- 

tained in one of the factors, and suppose that the graded formal JSJ decomposi- 

tion of GFL(x ,  z, y,p, a) is trivial. 

(i) Suppose that the graded resolution we have started with, GRes(y,  a), ter- 

minates in a rigid limit group. Then there exists a rigid graded (not for- 

real!) limit group Rgd(b,p, a), so that GFL(x ,  z, y, p, a) can be written as 

an amalgamated product 

GFL(x ,  z, y,p, a) = Rgd(b,p, a) *T~rm(~,z,p,a) GFCI(s ,  z, y,p, a). 

(ii) Suppose that the graded resolution we have started with, GRes(y,  a), ter- 

minates in a solid limit group. Then there exists a graded (not formal!) 

limit group Glimt(b,p, a), which is either rigid or solid (with respect to 

the defining parameters p), so that GFL(x ,  z, y,p, a) can be written as an 

amalgamated product 

GFL(x ,  z, y, p, a) = Glimt (b, p, a) *T~m(~,~,p,~) GFCI(s ,  z, y, p, a), 

where in both cases G FCI(  s, z, y,p, a) is the graded formal closure associ- 

ated with GFL(x ,  z, y,p, a) and Term(~, z,p, a) is the terminal subgroup 

of the graded formal closure G FCI ( s, z, y, p, a ). 

Proof: Suppose that  the graded resolution GRes(y,  a) terminates in a rigid limit 

group, and the graded formal limit group G F L ( x , z , y , p , a )  does not split as a 

non-trivial free product in which C(z,  y,p, a) is contained in one of the factors, 

and the graded formal JSJ decomposition of GFL(x ,  z, y,p, a) is trivial. 

The graded formal limit group GFL(x ,  z, y, p, a) was constructed from a con- 

vergent graded formal sequence, obtained from a test sequence composed of spe- 

cializations {(Yn,Pn, a)}, of the terminal rigid graded limit group of the graded 
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resolution GRes(y, p, a), automorphisms { (v~, 7~)} of the OH subgroups that  ap- 

pear in the various levels in the completed resolutions Comp(GRes)(z, Y, Pn, a), 
and homomorphisms {An: Comp(GRes)(z,y, pn, a)-+ Fk}, and a sequence of 

specializations {Xn}, for which E(Xn, A~(y),pn, a) = 1, so that  the sequence of 

homomorphisms an : F(x, z, y, p, a) -+ Fk converges. 

From the convergence of the sequence of homomorphisms 

{an: F(x,z ,y ,p ,a)  --+ Fk}, 

we get a (non-trivial) stable action of the graded formal limit group 

GFL(x, z, y,p, a) on a real tree Y1. By the classification of stable actions of f.g. 

groups on real trees (see theorem 1.5 in [Se]), with the action of GFL(x, z, y,p, a) 
on the real tree Y1, there is an associated (non-trivial) graph of groups A1 with 

abelian edge stabilizers. If the subgroup C(z, y, p, a) is contained in a vertex group 

of A1, or more generally, if C(z, y, p, a) is contained in the fundamental group of 

a proper subgraph of A1, the graded formal limit group GFL(x, z, y, p, a) admits 

a non-trivial graded formal decomposition, a contradiction to our assumptions. 

Suppose that  the graded limit group Glim(y, p, a), associated with the graded 

resolution GRes(y,p,a), is of the form Glim(y,p,a) = Rgd(w,p,a)* < f >, 

where F - -<  f l  . . . . .  fc > is a free group and Rgd(w,p,a) is a rigid graded 

(not formal!) limit group, and the graded resolution GRes(y, p, a) terminates in 

the rigid graded limit group Rgd(w,p, a). In this case, since GFL(x, z, y,p, a) 
admits no free decomposition in which C(z,y,p,a) is contained in one of the 

factors, since the graded formal JSJ  decomposition of GFL(x, z, y, p, a) is trivial, 

and since GFL(x, z, y, p, a) admits a non-trivial action on a real tree, necessarily 

GFL(x, z, y,p, a) = Rgd(b,p, a)*F, so GFL(x, z, y,p, a) = Rgd(b,p, a)*Rgd(w,p,a) 
(Rgd(w,p, a) * F), which proves the statement of the theorem in case 

Glim(x, z, y, p, a) = Rgd(w, p, a) * F. 

Hence, we may assume that  Glim(y,p, a) is not of the form Rgd(w,p, a)* F 
for Rgd(w,p, a) rigid, F free, and GRes(y,p, a) terminates in Rgd(w,p, a). By 

the properties of a graded formal test sequence (Definition 3.1), the action of 

C(z, y,p, a) on the real tree Y1 either contains a unique IET orbit and finitely 

many orbits of point stabilizers, or the action is discrete with a unique orbit 

of non-abelian point stabilizer and a unique edge stabilized by some abelian 

subgroup of C(z, y,p, a). Since GFL(x, z, y,p, a) inherits from its action on Y1 

a graph of groups of the same form as the one C(z, y,p, f, a) inherits from its 

action on Y1, the action of GFL(x, z, y,p, a) on Y1 must contain either a unique 
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orbit of an IET component and finitely many orbits of point stabilizers, or its 

action is discrete with one orbit of non-abelian point stabilizers and one orbit of 

edges stabilized by some abelian subgroup of GFL(x, z, y, p, a). 

In both types of the dynamics of the action of GFL(x, z, y,p, a) on the limit 

tree Y1, the generators x of the graded formal limit group GFL(x, z, y, p, a) can be 

written as words in elements from the vertex stabilizers V~ and elements from the 

graded formal closure GFCl (s, z, y, p, a). "Uncovering" the top level, we continue 

with each of the non-abelian, non-QH vertex stabilizers V1 / in the graph of groups 

A1, and the actions these vertex stabilizers obtain on corresponding real trees Y2/. 

Repeating the argument used for analyzing the action of GFL(x, y, z, p, a) on the 

real tree Y1, for the actions of the groups V~ on the real trees Y~, if C(z, y,p, a)A 
V1 / is not of the form Term(w,p ,a) ,  F where F = <  f l  . . . . .  fc > is free, and 

Term(w,p, a) is the terminal subgroup of the completion C(z, y,p, a), i.e., if we 

did not yet "finished" with all the levels of the graded resolution GRes(y,p, a), 
the action of Vi i on }~ must have the same dynamics as one of the two possibilities 

described above, i.e., either it contains a unique orbit of an IET component and 

finitely many orbits of point stabilizers, or the action is discrete with one orbit 

of non-abelian point stabilizers and one orbit of edges stabilized by some abelian 

subgroup of the graded formal closure GFCI(s, z, y, p, a). Hence, the generators 

x of the formal limit group GFL(x, z,y,p,a) can again be written as words in 

elements from vertex stabilizers W~ and elements from the graded formal closure 

GFCI(s, z, y,p, a). 

This process continues until at some stage ~f, C(z,y ,p ,a)N Ve i is of the form 

Term(w,p, a) , F ,  where F is free, and Terra(w,p, a) is the terminal group in the 

graded completion C(z, y,p, a). Therefore, a finite induction argument implies 

that every element in the graded formal limit group GFL(x, z, y,p, a) can be 

written as a word in elements from the graded formal closure GFCt(s, z, y, p, a), 
and elements from the terminal vertex V~, which is necessarily rigid. We denote 

this terminal vertex group Ve, Rgd(b,p, a). Clearly, the terminal group of the 

graded formal closure GFCl(s,z,p,a),  which we denote Term(~,z,p,a), is a 

subgroup of Rgd(b, p, a), and part (i) of the theorem follows. 

The proof of the theorem in case the graded resolution GRes(y, p, a) terminates 

in a solid limit group (part (ii)) is identical. | 

Defining graded formal limit groups and their graded formal JSJ decomposi- 

tions, and showing that  a (relatively) freely indecomposable graded formal limit 

group with trivial formal JSJ decomposition has the "same structure" as a graded 

formal closure GFCI(s, z, y, p, a), we are able to present graded formal Makanin- 
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Razborov diagrams. 
Let GRes(y, p, a) be a graded well-structured resolution of a graded limit group 

Glim(y,p, a), and let E(x, y,p, a) = 1 be a system of equations. 

Recall that  a graded formal limit group GFL(x,z,y,p,a) of the system 

E(x,y,p,a) = 1 with respect to the graded resolution GRes(y,p,a) was con- 

structed from a graded formal test sequence. 

On the set of graded formal limit groups GFL(x,z,y,p,a) associated with 

the system E(x, z,y,p,a) = 1, and the graded formal resolution GRes(y,p,a), 
we can naturally define a partial order. We say that  GFLl(x,z,y,p,a) > 
GFL2 (x, z, y, p, a), if there exists an epimorphism 

~1: GFLl(x,z,y,p,a) ~ GFL2(x,z,y,p,a). 

By the arguments used in the construction of the Makanin-Razborov diagram 

of a limit group (lemmas 5.4 and 5.5 in [Se]), given the system of equations 

E(x, y,p,a) = 1 and the graded resolution GRes(y,p, a), there exist maximal 
graded formal limit groups and up to the natural equivalence relation on graded 

formal limit groups there are only finitely many equivalence classes of maximal  

graded formal limit groups which we denote 

MGFLI(X, z, y,p, a),..., MGFL,(x, z, y,p, a). 

To construct the graded formal Makanin-Razborov diagram of the system 

E(x, y,p, a) = 1 with respect to the graded resolution GRes(y,p, a), we proceed 

as in the construction of the graded Makanin-Razborov diagrams (see sections 

9 and 10 in [Se]). We first decompose each of the maximal graded formal limit 

groups into the maximal (canonical) free decomposition in which the subgroup 

C(z,y,p,a) = <  z,y,p,a > <  MGFLi(x,z,y,p,a) 

is contained in a factor. We associate the graded formal JSJ decomposition with 

the factor containing C(z, y, p, a), and the (standard) abelian JSJ decomposition 

with each of the other factors. These associated JSJ decompositions naturally 

define tile graded formal modular groups of each of the maximal graded formal 

limit groups MGFLi(x, z,y,p,a). Having these modular groups, we are able to 

define graded formal shortening quotients of each of the maximal graded formal 

limit groups. 

Theorem 3.7 analyzes graded formal limit groups with trivial graded formal 

JSJ decomposition. In a similar way, one can analyze graded formal limit groups 

with non-trivial graded formal JSJ decomposition, which are isomorphic to one of 

their graded formal shortening quotients, which we call solid formal limit groups. 
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THEOREM 3.8: Let GFL(x ,  z, y,p, a) be a graded formal limit group which does 

not split as a non-trivial free product in which the subgroup C(z, y,p, a) is con- 

tained in one of the factors. Suppose that the graded formal JSJ decomposition 

of GFL(x ,  z, y,p, a) is non-trivial, and there exists a graded formal shortening 

quotient of GFL(x ,  z, y,p, a) that is isomorphic to GFL(x ,  z, y,p, a). 

Then there exists a solid (not formal!) limit group Sld(b,p, a), so that the 

graded formal limit group GFL(x ,  z, y,p, a) can be written in the form 

GFL(x,  z, y,p, a) = Sld(b,p, a) *Tcrm(~,z,p,a) GFCI(s, z, y,p, a), 

where GFCl ( s , z , y , p ,a )  is the graded formal closure associated with 

GFL(x ,  z, y,p, a), and Term(~, z,p, a) is the terminal subgroup of the graded 

formal closure GFCl (s, z, y, p, a). 

Proof: Identical with the proof of Theorem 3.7. | 

The combination of Theorems 3.7 and 3.8 allows us to complete the construc- 

tion of the graded formal Makanin-Razborov diagram. Suppose that  the graded 

formal limit group GFL(x ,  z, y,p, a) admits a non-trivial graded formal JSJ de- 

composition, and every graded formal shortening quotient of it is a proper quo- 

tient. By the arguments used to prove lemmas 5.4 and 5.5 in [Se], there are 

maximal graded formal shortening quotients, and up to the natural equivalence 

classes of graded formal limit groups there are only finitely many equivalence 

classes of maximal graded formal shortening quotients of each of the maximal 

graded formal limit groups M G F S Q  l(X, z, y, p, a ) , . . . ,  MGFS Qn  (x, z, y, p, a). 

Since a graded formal limit group is in particular a limit group, any properly 

decreasing sequence of graded formal limit groups terminates. Therefore, if we 

continue the above construction of maximal graded formal free decompositions, 

graded formal JSJ decompositions and graded formal modular groups for each 

of the factors, and then collect the (canonical) family of maximal graded formal 

shortening quotients and assume each graded formal shortening quotient is indeed 

a proper quotient, we are guaranteed that this iterative construction terminates. 

When the process of collecting maximal graded formal shortening quotients which 

are proper quotients terminates, we are left with either rigid or solid formal limit 

groups. By Theorems 3.7 and 3.8, a rigid or solid formal limit group has the 

form 

GFL(x ,  z, y,p, a) = Glimt(b,p, a) *Tcrm(~.z,p,a) GFCI(s,  z, y,p, a) 

for some rigid or solid (not formal!) limit group Glimt(b,p,a). We continue 
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the diagram with the graded (not formal!) Makanin Razborov diagrams of the 

(graded) rigid or solid limit group Glimt (b, p, a). 

We call the obtained diagram the graded formal Makanin-Razborov diagram 
of the system of equations E(x, y, p, a) = 1 with respect to the graded resolution 

GRes(y ,p ,a) .  We call each pa th  in this (directed) diagram a graded formal 

(Makanin-Razborov) resolution and denote it G F R e s ( x , z , y , p , a ) .  Note that  

with every such graded formal resolution one can naturally associate a graded 

formal closure G FCI ( s, z, p, p, a) of the original graded resolution Gr es(p, p, a ). 

Also, note that  every non-QH, non-abelian vertex group and every edge group in 

the abelian decomposition associated with the terminal rigid or solid limit group 

of the graded resolution GRes(p, a) with which we have started remains elliptic 

along all the graded formal resolutions of the formal limit group GFL(x ,  z, 9, P, a). 

Theorems 1.18 and 1.22 prove that  if an A E  sentence is a t ruth  sentence over 

the set of specializations of some (ungraded) limit group, then there exist formal 

solutions that  may serve as "witnesses" for the correctness of the sentence in a 

"generic" point. 

Corollaries 2.5 and 2.6 state the existence of these "witnesses" in terms of 

the formal Makanin-Razborov diagram associated with a system of equations 

E(x, y, a) = 1 with respect to a given well-structured resolution Res(y,  a). Since 

our "trial and error" procedure for quantifier elimination is based on finding 

"witnesses" in s t ra ta  of the parameter  set, i.e., graded formal solutions that  

satisfy the properties of Theorems 1.18 and 1.22 on "nice" subsets of the ambient 

set of defining parameters,  we present generalizations of Corollaries 2.5 and 2.6 

in the graded framework. 

COROLLARY 3.9: Let Fk = <  a l , . . . ,  ak > be a free group, let Glim(y,p,  a) be a 

graded limit group deigned by the set of relations ul (y, p, a) = 1 , . . . ,  Um (y, p, a) = 
1, and let GRes(y,  p, a) be a well-structured graded resolution of the graded limit 

group Glim(y,  p, a). 

Let E(x , y ,p ,a )  = 1 be a system of equations over Fk, and tet 

~(.~,, ~ , p ,  a) . . . .  , v~(~ ,  y , p ,  a) 

be a collection of words in the alphabet {x, y, p, a}. Let T(p) be defined by the 

predicate 

T(p) = Vy (u l (y ,p ,a)  = l , . . . , ' um(y ,p ,a )  = l) 3x E(x ,y ,p ,a )  = lA 

Av l (x , y ,p ,a )  7 £ 1 , . . . , v r ( x , y , p , a )  ¢ 1. 

I f  a specialization Po E T(p), and (Y0, P0, a) is a specialization of the terminal 
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rigid or solid graded limit group of the graded resolution GRes(y,  p, a), then there 

exists a collection of formal resolutions 

FRes l ( z ,  z, Y, Po, a ) , . . . ,  FResq(x,  z, Y, Po, a) 

covered by graded formal resolutions 

GFResi ,  (x, z, y, p, a ) , . . . ,  GFResiq (x, z, y, p, a) 

from the graded formal Makanin-Razborov diagram of the system E(x,  y, p, a) = 

1 with respect to the graded resolution GRes(y,p,  a), for which: 

(i) The collection of formal closures 

FCl l (s ,  z, y, po, a ) , . . . ,  FClq(s, z, Y,Po, a) 

associated with the formal resolutions 

FRes l ( x ,  z, Y, Po, a) . . . .  , FResq(X, z, Y,Po, a) 

is a covering closure of the (ungraded) resolution GRes(y,  Po, a) correspond- 

ing to the specialization (Yo, Po, a). 

(ii) For each index i, 1 < i < q, there exists a formal solution x i ( s , z ,y ,po ,  a) 

that factors through the formal resolution F Re si ( x, z, Y , Po, a ) , and a spe- 

• ~i ~ a), that for every index j cialization ( s* o, ~o, Yo, Po, so 

i ~i  i i 
vj(xi(so, ~o, Yo,Po, a), Yo, Po, a) ~ 1. 

In particular, in case the above predicate is truth at Po, then for any spe- 

cialization (Yo,Po, a) of the terminal rigid or solid limit group of the graded 

resolution GRes(y,p,  a), the set of formal closures associated with formal res- 

olutions covered by the graded formal resolutions in the graded formal Makanin 

Razborov diagram of the system E(x , y ,p ,a )  -- 1 with respect to the graded 

resolution GRes(y,p,  a) contains a covering closure of the (ungraded) resolution 

G Res(y, po, a) corresponding to the specialization (Yo, Po, a ). 

In a similar way, we get the following corollary fi'om Theorem 2.6. 

COROLLARY 3.10: Let Fk =< al, . . . , ak > be a free group, let Glim(y,  p, a) be a 

graded limit group defined by the set of relations nl (y, p, a) = 1 , . . . ,  Um (y, p, a) = 

1, and let GRes(y ,p ,  a) be a well-structured graded resolution of the graded limit 

group Glim(y,  p, a). 
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Let E l ( z , y , p , a )  = 1 , . . . , E r ( x , y , p , a )  = 1 be a collection of systems of equa- 
tions over Fk, and let q /~(x ,y ,p ,a) , . . . ,  q/T(x,y,p,a) be a set of collections of 

words in the alphabet {x, y, p, a}. Let T(p) be defined by the predicate 

T(p) = Vy (ul(y ,p,a)  = l . . . . .  um(y,p,a) = l) 3x 

(E l (x ,y ,p ,a )  = 1Aq~l(x,y,p,a) • 1)V- . .V(E~(x ,y ,p ,a )  = 1A~r(x ,y ,p ,a )  ¢ 1). 

Ira specialization Po E T(p), and (Yo,Po, a) is a specialhation of the terminal 

rigid or solid graded limit group of the graded resolution GRes (y, p, a), then there 

exists a collection of formal resolutions 

FRes l (x ,  z, Y,Po, a) . . . . .  FResq(X, z, Y, Po, a) 

covered by graded formal resolutions 

GFResil  (x, z, y,p, a ) , . . . ,  GFResiq (x, z, y,p, a) 

from the graded formal Makanin-Razborov diagrams of the systems 

Ej(il)(x, y,p, a) . . . . .  Ej(iq)(x, y,p, a) 

in correspondence, with respect to the graded resolution GRes(y, p, a), for which: 

(i) The collection of formal closures 

FCll (s ,  z, Y,Po, a) . . . . .  FClq(s, z, Y,Po, a) 

associated with the formal resolutions 

FRes l  (x, z, Y, Po, a) . . . . .  FResq(x, z, Y, Po, a) 

is a covering closure of the (ungraded) resolution G Res (y, Po, a) correspond- 

ing to the specialization (Yo, Po, a). 

(ii) For each index i, 1 < i < q, there exists a formal solution xi(s, z, Y,Po, a) 

that factors through the formal resolution FResh(x, z, Y, Po, a), and a spe- 

cialization ( s~, z~, y~, Po, a ), for which 

, I , j ( ~ ) ( x ~ ( s ~ ,  -~  " ~o, Y~, Po, a), y~, Po, a) ¢ 1. 

In particular, in case tile above predicate is truth at Po, then for any specializa- 

tion (Yo,Po, a) of the terminal rigid or solid limit group of the graded resolution 

GRes(y, p, a), the set of formal closures associated with formal resolutions cov- 

ered by the graded formal resolutions in the graded formal Makanin Razborov 

diagrams of the systems 

E l ( x , y ,p ,a )  = 1 . . . .  ,Z~(x ,y ,p ,a)  ---- 1 
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with respect to the graded resolution GRes(y ,p ,  a) contains a covering closure 

of  the (ungraded) resolution GRes(y,po,  a) corresponding to the specialization 

(yo, po, a).  
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